首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N-Aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium metathesis catalysts are highly selective toward the ethenolysis of methyl oleate, giving selectivity as high as 95% for the kinetic ethenolysis products over the thermodynamic self-metathesis products. The examples described herein represent some of the most selective NHC-based ruthenium catalysts for ethenolysis reactions to date. Furthermore, many of these catalysts show unusual preference and stability toward propagation as a methylidene species and provide good yields and turnover numbers at relatively low catalyst loading (<500 ppm). A catalyst comparison showed that ruthenium complexes bearing sterically hindered NHC substituents afforded greater selectivity and stability and exhibited longer catalyst lifetime during reactions. Comparative analysis of the catalyst preference for kinetic versus thermodynamic product formation was achieved via evaluation of their steady-state conversion in the cross-metathesis reaction of terminal olefins. These results coincided with the observed ethenolysis selectivities, in which the more selective catalysts reach a steady state characterized by lower conversion to cross-metathesis products compared to less selective catalysts, which show higher conversion to cross-metathesis products.  相似文献   

2.
A high throughput experimentation (HTE) study identified active Ru metathesis catalysts and reaction conditions for the ethenolysis of maleate esters to the respective acrylate esters. Catalysts were tested at various loadings (75–10’000 ppm) and temperatures (30–60 °C) with maleate esters dissolved in toluene (up to ca. 44 wt-%) or neat and at variable partial pressures of ethylene (0.2–10 bar). Ruthenium catalysts containing a PCy3 ligand, such as 1st or 2nd generation Grubbs catalysts, as well as the state-of-the-art catalysts containing cyclic alkyl amino carbene (CAAC) ligands, are generally inferior to Hoveyda–Grubbs 2nd generation catalyst in ethenolysis of maleates. Productive turnover numbers could exceed 1900 if the ethenolysis reaction is performed at low ethylene pressure (0.2–3 bar) and reach 5200 when a polymeric phenol additive was used. Such catalytic performance falls well within the window practiced in industry. Moreover, a crude technoeconomic analysis finds similar production cost for the ethenolysis route and conventional technology, that is, propene oxidation followed by esterification, justifying research to further improve the ethenolysis route.  相似文献   

3.
A series of ruthenium catalysts for olefin metathesis have been screened in the cross metathesis of 1,9-decadiene with ethyl acrylate. Under optimized reaction conditions a catalyst loading of only 100 ppm in respect to double bonds was sufficient for complete conversion of the diene.  相似文献   

4.
In this study, a new pyridinium‐tagged Ru complex was designed and anchored onto sulfonated silica, thereby forming a robust and highly active supported olefin‐metathesis pre‐catalyst for applications under batch and continuous‐flow conditions. The involvement of an oxazine–benzylidene ligand allowed the reactivity of the formed Ru pre‐catalyst to be efficiently controlled through both steric and electronic activation. The oxazine scaffold facilitated the introduction of the pyridinium tag, thereby affording the corresponding cationic pre‐catalyst in good yield. Excellent activities in ring‐closing (RCM), cross (CM), and enyne metathesis were observed with only 0.5 mol % loading of the pre‐catalyst. When this powerful pre‐catalyst was immobilized onto a silica‐based cationic‐exchange resin, a versatile catalytically active material for batch reactions was generated that also served as fixed‐bed material for flow reactors. This system could be reused at 1 mol % loading to afford metathesis products in high purity with very low ruthenium contamination under batch conditions (below 5 ppm). Scavenging procedures for both batch and flow processes were conducted, which led to a lowering of the ruthenium content to as little as one tenth of the original values.  相似文献   

5.
The phoban-indenylidene complex is a robust catalyst for self-metathesis and ethenolysis reactions of methyl oleate. The phoban-indenylidene catalyst was characterized by X-ray analysis, NMR and microanalysis and was used in various self-metathesis and ethenolysis of methyl oleate, giving rise to significantly higher end of run conversions compared to Grubbs 1st generation catalyst. These complexes are more stable and active than commercial Grubbs 1st generation catalyst, can be accessed from simple precursors and should give rise to more economical metathesis processes.  相似文献   

6.
An efficient procedure is described for ring‐closing metathesis reactions. A conversion of 95 % for diethyl diallylmalonate in dilute solution could be achieved within a few minutes, reaching TOF=4173 min?1, with very low loading of commercially available Ru catalysts that contained unsaturated NHC ligands. In general, only 50 to 250 ppm of the catalyst is required to achieve near‐quantitative conversion into a broad variety of 5–16‐membered heterocyclic compounds. The practicality of this procedure was illustrated in the synthesis of 5–8‐membered Ntert‐butoxycarbonyl (N‐Boc)‐ and Npara‐toluenesulfonyl (N‐Ts)‐protected cyclic amines and 9–16‐membered lactones. The synthesis of macrocyclic proline‐based lactams required slightly higher catalyst loadings. Along with monocyclic products, oligomeric byproducts, mostly cyclodimers, were isolated and characterized.  相似文献   

7.
Polyisobutylene‐supported second‐generation Hoveyda‐Grubbs catalyst is shown to be an effective nonpolar phase tag for ring‐opening metathesis polymerization (ROMP). The catalytic activities of the supported Ru–carbene complex in ROMP are comparable to those of their homogeneous counterparts. The separability of these catalysts leads to lower Ru contamination (0.5 ppm levels) in the polymer products in comparison to the nonsupported Hoveyda‐Grubbs catalyst (10 PPM). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
The data reported in this paper demonstrate that great care must be taken when choosing an appropriate catalyst for a given metathesis reaction. First-generation catalysts were found to be useful in the metathesis of sterically unhindered substrates. Second-generation catalysts (under optimised conditions) showed good to excellent activities toward sterically hindered and electron-withdrawing group (EWG)-substituted alkenes that do not react using the first-generation complexes. A strong temperature effect was noted on all of the reactions tested. Interestingly, attempts to force a reaction by increasing the catalyst loading were much less effective. Therefore, when possible, it is suggested that metathesis transformations should be carried out with a second-generation catalyst at 70 degrees C in toluene. However, different second-generation catalysts proved to be optimal for different applications and no single catalyst outperformed all others in all cases. Nevertheless, some empirical rules can be deduced from the model experiments, providing preliminary hints for the selection of the optimal catalysts.  相似文献   

9.
Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross‐metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon–carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications.  相似文献   

10.
A simple, one‐step mechanochemical procedure for immobilisation of homogeneous metathesis catalysts in metal–organic frameworks was developed. Grinding MIL‐101‐NH2(Al) with a Hoveyda–Grubbs second‐generation catalyst resulted in a heterogeneous catalyst that is active for metathesis and one of the most stable immobilised metathesis catalysts. During the mechanochemical immobilisation the MIL‐101‐NH2(Al) structure was partially converted to MIL‐53‐NH2(Al). The Hoveyda–Grubbs catalyst entrapped in MIL‐101‐NH2(Al) is responsible for the observed catalytic activity. The developed synthetic procedure was also successful for the immobilisation of a Zhan catalyst.  相似文献   

11.
A new concept for noncovalent immobilization of a ruthenium olefin metathesis catalyst is presented. The 2-isopropoxybenzylidene ligand of a Hoveyda-Grubbs carbene is further modified by an additional amino group (7) and immobilization is achieved by treatment with sulfonated polystyrene forming the corresponding ammonium salt. In this novel strategy for the immobilization of ruthenium-based metathesis catalysts, the amino group plays a two-fold role, being first an active anchor for immobilization and second, after protonation, activating the catalysts (electron donating to electron withdrawing activity switch). The polymeric support was prepared by precipitation polymerization which led to small bead sizes (0.2-2 microm) and large surface areas. Compared to commercial resins this tailor-made phase showed superior properties in immobilization of complex 7. This concept of immobilization was applied to glass-polymer composite megaporous Raschig rings. Ru catalyst 7 on Raschig rings was used under batch conditions in various metathesis reactions, including ring-closing (RCM), cross- (CM) and enyne metathesis, to give products of high chemical purity with very low ruthenium contamination levels (21-102 ppm). The same ring can be used for up to 6 cycles of metathesis.  相似文献   

12.
A WO3/CeO2-ZrO2 catalyst system was discovered for selective catalytic reduction of NOx with NH3; the catalyst (10 wt% WO3 loading) showed nearly 100% NOx conversion in a temperature range of 200-500 degrees C, at a space velocity of 90 000 h(-1) in a simulated diesel exhaust containing 550 ppm NOx (NO : NO2 feed ratio at 1.0), 10 vol% H2O and 10 vol% CO2; the catalyst also exhibited high temperature stability.  相似文献   

13.
Thermodynamic calculations demonstrated that, when any C5+ alkene is subjected to ethenolysis in an excess of ethylene on a catalyst providing the occurrence of a metathesis and positional isomerization, the main reaction product is propylene. The results of the calculations were confirmed experimentally for the cases of ethenolysis of hexene-1 and heptene-1 on Re2O7/SO42-/ZrO2–Al2O3 and Re2O7/B2O3–Al2O3 catalysts.  相似文献   

14.
Grafting a molybdenum oxo alkylidene on silica (partially dehydroxylated at 700 °C) affords the first example of a well‐defined silica‐supported Mo oxo alkylidene, which is an analogue of the putative active sites in heterogeneous Mo‐based metathesis catalysts. In contrast to its tungsten analogue, which shows poor activity towards terminal olefins because of the formation of a stable off‐cycle metallacyclobutane intermediate, the Mo catalyst shows high metathesis activity for both terminal and internal olefins that is consistent with the lower stability of Mo metallacyclobutane intermediates. This Mo oxo metathesis catalyst also outperforms its corresponding neutral silica‐supported Mo and W imido analogues.  相似文献   

15.
Ni/ZrO2 catalysts were prepared by the incipient-wetness impregnation method and were investigated in activity and selectivity for the selective catalytic methanation of CO in hydrogen-rich gases with more than 20 vol% CO2. The result showed that Ni loadings significantly influenced the performance of Ni/ZrO2 catalyst. The 1.6 wt% Ni loading catalyst exhibited the highest catalytic activity among all the catalysts in the selective methanation of CO in hydrogen-rich gas. The outlet concentration of CO was less than 20 ppm with the hydrogen consumption below 7%, at a gas-hourly-space velocity as high as 10000 h-1 and a temperature range of 260 °C to 280 °C. The X-ray diffraction (XRD) and temperature programmed reduction (TPR) measurements showed that NiO was dispersed thoroughly on the surface of ZrO2 support if Ni loading was under 1.6 wt%. When Ni loading was increased to 3 wt% or above, the free bulk NiO species began to assemble, which was not favorable to increase the selectivity of the catalyst.  相似文献   

16.
The catalytic performances of three Phosphabicyclononane (Phoban)-containing ruthenium-based pre-catalysts have been evaluated for metathesis transformations. A wide screening of substrates in ring-closing metathesis reactions reveals the greater efficiency of pre-catalyst 4. Comparison of the catalytic activities of 4 with Grubbs' first-generation pre-catalyst illustrates the key role of the Phoban ligand. Additionally, a comparative study of three Phoban-containing pre-catalysts has been conducted for the self-metathesis of 1-octene at low catalyst loading (25-100 ppm).  相似文献   

17.
In the search for a highly active and selective heterogenized metathesis catalyst, we systematically varied the pore geometry and size of various silica‐based mesoporous (i.e., MCM‐41, MCM‐48, and SBA‐15) and microporous (ZSM‐5 and MWW) versus macroporous materials (D11‐10 and Aerosil 200), besides other process parameters (temperature, dilution, and mean residence time). The activity and, especially, selectivity of such “linker‐free” supports for ruthenium metathesis catalysts were evaluated in the cyclodimerization of cis‐cyclooctene to form 1,9‐cyclohexadecadiene, a valuable intermediate in the flavor and fragrance industry. The optimized material showed not only exceptionally high selectivity to the valuable product, but also turned out to be a truly heterogeneous catalyst with superior activity relative to the unsupported homogeneous complex.  相似文献   

18.
A study on the enyne metathesis reaction leading to the formation cyclic compounds using ruthenium–indenylidene complexes is presented. Several 1,11‐dien‐6‐ynes have been subjected to ruthenium metathesis cyclization by using ruthenium–indenylidene complexes bearing various phosphine and N‐heterocyclic carbene (NHC) ligands. Interestingly, for some substrates chemodivergent metathesis occurs and is a function of the catalyst employed. This led us to investigate the competing “ene‐then‐yne” or “yne‐then‐ene” reaction pathways apparently at play in these systems using both experimental observations and DFT calculations. Experimental and computational studies were found in good agreement and permit to conclude that for phosphine‐containing catalysts, the “ene‐then‐yne” pathway is exclusively adopted. On the other hand, for catalysts bearing NHC ligands, both pathways are possible.  相似文献   

19.
The reaction of [W(?O)(?CHCMe2Ph)(dAdPO)2], containing bulky 2,6‐diadamantyl aryloxide ligands, with partially dehydroxylated silica selectively yields a well‐defined silica‐supported alkylidene complex, [(?SiO)W(?O)(?CHCMe2Ph)(dAdPO)]. This fully characterized material is a very active and stable alkene metathesis catalyst, thus allowing loadings as low as 50 ppm in the metathesis of internal alkenes. [(?SiO)W(?O)(?CHCMe2Ph)(dAdPO)] also efficiently catalyzes the homocoupling of terminal alkenes, with turnover numbers exceeding 75 000 when ethylene is constantly removed to avoid the formation of the less reactive square‐based pyramidal metallacycle resting state.  相似文献   

20.
Highly active bifunctional diporphyrin and triporphyrin catalysts were synthesized through Stille coupling reactions. As compared with a porphyrin monomer, both exhibited improved catalytic activities for the reaction of CO2 with epoxides to form cyclic carbonates, because of the multiple catalytic sites which cooperatively activate the epoxide. Catalytic activities were carefully investigated by controlling temperature, reaction time, and catalyst loading, and very high turnover number and turnover frequency were obtained: 220 000 and 46 000 h?1, respectively, for the magnesium catalyst, and 310 000 and 40 000 h?1, respectively, for the zinc catalyst. Results obtained with a zinc/free‐base hybrid diporphyrin catalyst demonstrated that the Br? ions on the adjacent porphyrin moiety also function as nucleophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号