首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyketide synthases (PKSs) catalyze the production of numerous biologically important natural products via repeated decarboxylative condensation reactions. Modular PKSs, such as the 6-deoxyerythronolide B synthase (DEBS), consist of multiple catalytic modules, each containing a unique set of covalently linked catalytic domains. To better understand the engineering opportunities of these assembly lines, the extender unit and acyl carrier protein (ACP) specificity of keto synthase (KS) domains from modules 3 and 6 of DEBS were analyzed. These studies were undertaken with a newly developed didomain [KS][AT] construct, which lacks its own ACP domain and can therefore be interrogated with homologous or heterologous ACP or acyl-ACP substrates. By substituting the natural methylmalonyl extender unit with a malonyl group, a modest role was demonstrated for the KS in recognition of the nucleophilic substrate. The KS domain from module 3 of DEBS was found to exhibit a distinct ACP-recognition profile from the KS domain of module 6. On the basis of the above kinetic insights, a hybrid module was constructed ([KS3][AT3][KR5][ACP5][TE]) which displayed substrate recognition and elongation capabilities consistent with the natural module 3 protein. Unlike module 3, however, which lacks a ketoreductase (KR) domain, the hybrid module was able to catalyze reduction of the beta-ketothioester product of chain elongation. The high expression level and functionality of this hybrid protein demonstrates the usefulness of kinetic analysis for hybrid module design.  相似文献   

2.
As a unique structural moiety in natural products, cinnamoyl lipids (CLs), are proposed to be assembled by unusual type II polyketide synthases (PKSs). Herein, we demonstrate that the assembly of the CL compounds youssoufenes is accomplished by a PKS system that uniquely harbors three phylogenetically different ketosynthase/chain length factor (KS/CLF) complexes (YsfB/C, YsfD/E, and YsfJ/K). Through in vivo gene inactivation and in vitro reconstitution, as well as an intracellular tagged carrier‐protein tracking (ITCT) strategy developed in this study, we successfully elucidated the isomerase‐dependent ACP‐tethered polyunsaturated chain elongation process. The three KS/CLFs were revealed to modularly assemble different parts of the youssoufene skeleton, during which benzene ring closure happens right after the formation of an ACP‐tethered C18 polyene. Of note, the ITCT strategy could significantly contribute to the elucidation of other carrier‐protein‐dependent biosynthetic machineries.  相似文献   

3.
BACKGROUND: Modular polyketide synthases (PKSs) produce a wide range of medically significant compounds. In the case of the pikromycin PKS of Streptomyces venezuelae, four separate polypeptides (PikAI-PikAIV), comprising a total of one loading domain and six extension modules, generate the 14-membered ring macrolactone narbonolide. The polypeptide PikAIV contains a thioesterase (TE) domain and is responsible for catalyzing both the last elongation step with methylmalonyl CoA, and subsequent release of the final polyketide chain elongation intermediate from the PKS. Under certain growth conditions this polypeptide is synthesized from an alternative translational start site, giving rise to an N-terminal truncated form of PikAIV, containing only half of the ketosynthase (KS(6)) domain. The truncated form of PikAIV is unable to catalyze the final elongation step, but is able to cleave a polyketide chain from the preceding module on PikAIII (ACP(5)), giving rise to the 12-membered ring product 10-deoxymethynolide. RESULTS: S. venezuelae mutants expressing hybrid PikAIV polypeptides containing acyl carrier protein (ACP) and malonyl CoA specific acyltransferase (AT) domains from the rapamycin PKS were unable to catalyze production of 12- or 14-membered ring macrolactone products. Plasmid-based expression of a hybrid PikAIV containing the native KS(6) and TE domains, however, restored production of both narbonolide and 10-deoxymethynolide in the S. venezuelae AX912 mutant that generates a TE-deleted form of PikAIV. Use of alternative KS domains or deletion of the KS(6) domain within the hybrid PikAIV resulted in loss of both products. Plasmid-based expression of a TE domain of PikAIV as a separate polypeptide in the AX912 mutant resulted in greater than 50% restoration of 10-deoxymethynolide, but not in mutants expressing a hybrid PikAIV bearing an unnatural AT domain. Mutants expressing hybrid PikAIV polypeptides containing the natural AT(6) domains and different ACP domains efficiently produced polyketide products, but with a significantly higher 10-deoxymethynolide/narbonolide ratio than observed with native PikAIV. CONCLUSIONS: Dimerization of KS(6) modules allows in vivo formation of a PKS heterodimer using PikAIV polypeptides containing different AT and ACP domains. In such heterodimers, the TE domain and the AT(6) domain responsible for formation of the narbonolide product are located on different polypeptide chains. The AT(6) domain of PikAIV plays an important role in facilitating TE-catalyzed chain termination (10-deoxymethynolide formation) at the proceeding module in PikAIII. The pikromycin PKS can tolerate the presence of multiple forms (active and inactive) of PikAIV, and decreased efficiency of elongation by PikAIV can result in increased levels of 10-deoxymethynolide. These results provide new insight into functional molecular interactions and interdomain recognition in modular PKSs.  相似文献   

4.
The acyl carrier protein (ACP) from fatty acid synthases sequesters elongating products within its hydrophobic core, but this dynamic mechanism remains poorly understood. We exploited solvatochromic pantetheine probes attached to ACP that fluoresce when sequestered. The addition of a catalytic partner lures the cargo out of the ACP and into the active site of the enzyme, thus enhancing fluorescence to reveal the elusive chain‐flipping mechanism. This activity was confirmed by the use of a dual solvatochromic cross‐linking probe and solution‐phase NMR spectroscopy. The chain‐flipping mechanism was visualized by single‐molecule fluorescence techniques, thus demonstrating specificity between the Escherichia coli ACP and its ketoacyl synthase catalytic partner KASII.  相似文献   

5.
Ketosynthase (KS) domains of modular type I polyketide synthases (PKSs) typically catalyze the Claisen condensation of acyl and malonyl units to form linear chains. In stark contrast, the KS of the rhizoxin PKS branching module mediates a Michael addition, which sets the basis for a pharmacophoric δ‐lactone moiety. The precise role of the KS was evaluated by site‐directed mutagenesis, chemical probes, and biotransformations. Biochemical and kinetic analyses helped to dissect branching and lactonization reactions and unequivocally assign the entire sequence to the KS. Probing the range of accepted substrates with diverse synthetic surrogates in vitro, we found that the KS tolerates defined acyl chain lengths to produce five‐ to seven‐membered lactones. These results show that the KS is multifunctional, as it catalyzes β‐branching and lactonization. Information on the increased product portfolio of the unusual, TE‐independent on‐line cyclization is relevant for synthetic biology approaches.  相似文献   

6.
The gem‐dimethyl groups in polyketide‐derived natural products add steric bulk and, accordingly, lend increased stability to medicinal compounds, however, our ability to rationally incorporate this functional group in modified natural products is limited. In order to characterize the mechanism of gem‐dimethyl group formation, with a goal toward engineering of novel compounds containing this moiety, the gem‐dimethyl group producing polyketide synthase (PKS) modules of yersiniabactin and epothilone were characterized using mass spectrometry. The work demonstrated, contrary to the canonical understanding of reaction order in PKSs, that methylation can precede condensation in gem‐dimethyl group producing PKS modules. Experiments showed that both PKSs are able to use dimethylmalonyl acyl carrier protein (ACP) as an extender unit. Interestingly, for epothilone module 8, use of dimethylmalonyl‐ACP appeared to be the sole route to form a gem‐dimethylated product, while the yersiniabactin PKS could methylate before or after ketosynthase condensation.  相似文献   

7.
Polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are essential fatty acids. PUFA synthases are composed of three to four subunits and each create a specific PUFA without undesirable byproducts. However, detailed biosynthetic mechanisms for controlling final product profiles have been obscure. Here, the bacterial DHA and EPA synthases were carefully dissected by in vivo and in vitro experiments. In vitro analysis with two KS domains (KSA and KSC) and acyl‐acyl carrier protein (ACP) substrates showed that KSA accepted short‐ to medium‐chain substrates while KSC accepted medium‐ to long‐chain substrates. Unexpectedly, condensation from C18 to C20, the last elongation step in EPA biosynthesis, was catalyzed by KSA domains in both EPA and DHA synthases. Conversely, condensation from C20 to C22, the last elongation step for DHA biosynthesis, was catalyzed by the KSC domain in DHA synthase. KSC domains therefore determine the chain lengths.  相似文献   

8.
In fungal non‐reducing polyketide synthases (NR‐PKS) the acyl‐carrier protein (ACP) carries the growing polyketide intermediate through iterative rounds of elongation, cyclization and product release. This process occurs through a controlled, yet enigmatic coordination of the ACP with its partner enzymes. The transient nature of ACP interactions with these catalytic domains imposes a major obstacle for investigation of the influence of protein–protein interactions on polyketide product outcome. To further our understanding about how the ACP interacts with the product template (PT) domain that catalyzes polyketide cyclization, we developed the first mechanism‐based crosslinkers for NR‐PKSs. Through in vitro assays, in silico docking and bioinformatics, ACP residues involved in ACP–PT recognition were identified. We used this information to improve ACP compatibility with non‐cognate PT domains, which resulted in the first gain‐of‐function ACP with improved interactions with its partner enzymes. This advance will aid in future combinatorial biosynthesis of new polyketides.  相似文献   

9.
Modular polyketide synthases such as 6‐deoxyerythronolide B synthase (DEBS) catalyze the biosynthesis of structurally complex natural products. Streptomyces coelicolor CH999/pJRJ2 harbors a plasmid encoding DEBS(KS10), a mutant form of 6‐deoxyerythronolide B synthase that is blocked in the formation of 6‐deoxyerythronolide B ( 1 , 6‐dEB) due to a mutation in the active site of the ketosynthase (KS1) domain that normally catalyzes the first polyketide chain‐elongation step of 6‐dEB biosynthesis. Administration of (2S,3R,4S)‐ and (2S,3R,4R)‐3‐hydroxy‐2,4‐dimethylhexanoic acid N‐acetylcysteamine (SNAC) thioesters (= S‐[2‐(acetylamino)ethyl] (2S,3R,4S)‐ and (2S,3R,4R)‐3‐hydroxy‐2,4‐dimethylhexanethioates) 3 and 4 in separate experiments to cultures of Streptomyces coelicolor CH999/pJRJ2 led to production of the corresponding (14S)‐ and (14R)‐14‐methyl analogues of 6‐dEB, 10 and 11 , respectively. Unexpectedly, when a 3 : 2 mixture of 4 and 3 was fed under the same conditions, exclusively branched‐chain macrolactone 11 was isolated. In similar experiments, feeding of 3 and 4 to S. coelicolor CH999/pCK16, an engineered strain harboring DEBS1+TE(KS10), resulted in formation of the branched‐chain triketide lactones 13 and 14 , while feeding of the 3 : 2 mixture of 4 and 3 gave exclusively 14 . The biochemical basis for this stereochemical discrimination was established by using purified DEBS module 2+TE to determine the steady‐state kinetic parameters for 3 and 4 , with the kcat/KM for 4 shown to be sevenfold greater than that of 3 .  相似文献   

10.

Background  

The apicomplexan Cryptosporidium parvum genome possesses a 25-kb intronless open reading frame (ORF) that predicts a multifunctional Type I fatty acid synthase (CpFAS1) with at least 21 enzymatic domains. Although the architecture of CpFAS1 resembles those of bacterial polyketide synthases (PKSs), this megasynthase is predicted to function as a fatty acyl elongase as our earlier studies have indicated that the N-terminal loading unit (acyl-[ACP] ligase) prefers using intermediate to long chain fatty acids as substrates, and each of the three internal elongation modules contains a complete set of enzymes to produce a saturated fatty acyl chain. Although the activities of almost all domains were confirmed using recombinant proteins, that of the C-terminal reductase domain (CpFAS1-R) was yet undetermined. In fact, there were no published studies to report the kinetic features of any reductase domains in bacterial PKSs using purified recombinant or native proteins.  相似文献   

11.
Polyketides are a diverse class of medically important natural products whose biosynthesis is catalysed by polyketide synthases (PKSs), in a fashion highly analogous to fatty acid biosynthesis. In modular PKSs, the polyketide chain is assembled by the successive condensation of activated carboxylic acid-derived units, where chain extension occurs with the intermediates remaining covalently bound to the enzyme, with the growing polyketide tethered to an acyl carrier domain (ACP). Carboxylated acyl-CoA precursors serve as activated donors that are selected by the acyltransferase domain (AT) providing extender units that are added to the growing chain by condensation catalysed by the ketosynthase domain (KS). The action of ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) activities can result in unreduced, partially reduced, or fully reduced centres within the polyketide chain depending on which of these enzymes are present and active. The PKS-catalysed assembly process generates stereochemical diversity, because carbon-carbon double bonds may have either cis- or trans- geometry, and because of the chirality of centres bearing hydroxyl groups (where they are retained) and branching methyl groups (the latter arising from use of propionate extender units). This review shall cover the studies that have determined the stereochemistry in many of the reactions involved in polyketide biosynthesis by modular PKSs.  相似文献   

12.
BACKGROUND: Polyketides are structurally diverse natural products that have a range of medically useful activities. Nonaromatic bacterial polyketides are synthesised on modular polyketide synthase (PKS) multienzymes, in which each cycle of chain extension requires a different 'module' of enzymatic activities. Attempts to design and construct modular PKSs that synthesise specified novel polyketides provide a particularly stringent test of our understanding of PKS structure and function. RESULTS: We have constructed bimodular and trimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only modules 1 and 2 and a thioesterase (TE), by substituting multiple domains with appropriate counterparts derived from the rapamycin PKS. Hybrid PKSs were obtained that synthesised the predicted target triketide lactones, which are simple analogues of cholesterol-lowering statins. In constructing intermodular fusions, whether between modules in the same or in different proteins, it was found advantageous to preserve intact the acyl carrier protein-ketosynthase (ACP-KS) didomain that spans the junction between successive modules. CONCLUSIONS: Relatively simple considerations govern the construction of functional hybrid PKSs. Fusion sites should be chosen either in the surface-accessible linker regions between enzymatic domains, as previously revealed, or just inside the conserved margins of domains. The interaction of an ACP domain with the adjacent KS domain, whether on the same polyketide or not, is of particular importance, both through conservation of appropriate protein-protein interactions, and through optimising molecular recognition of the altered polyketide chain in the key transfer of the acyl chain from the ACP of one module to the KS of the downstream module.  相似文献   

13.
Individual modules of modular polyketide synthases (PKSs) such as 6-deoxyerythronolide B synthase (DEBS) consist of conserved, covalently linked domains separated by unconserved intervening linker sequences. To better understand the protein-protein and enzyme-substrate interactions in modular catalysis, we have exploited recent structural insights to prepare stand-alone domains of selected DEBS modules. When combined in vitro, ketosynthase (KS), acyl transferase (AT), and acyl carrier protein (ACP) domains of DEBS module 3 catalyzed methylmalonyl transfer and diketide substrate elongation. When added to a minimal PKS, ketoreductase domains from DEBS modules 1, 2, and 6 showed specificity for the beta-ketoacylthioester substrate, but not for either the ACP domain carrying the polyketide substrate or the KS domain that synthesized the substrate. With insights into catalytic efficiency and specificity of PKS modules, our results provide guidelines for constructing optimal hybrid PKS systems.  相似文献   

14.
Many polyketides are synthesized by a class of multifunctional enzymes called type I modular polyketide synthases (PKSs). Several reports have described the power of predictively altering polyketide structure by replacing individual PKS domains with homologues from other PKSs. For example, numerous erythromycin analogues have been generated by replacing individual methylmalonyl-specific acyl transferase (AT) domains of the 6-deoxyerythronolide B synthase (DEBS) with malonyl-, ethylmalonyl-, or methoxymalonyl-specific domains. However, the construction of hybrid PKS modules often attenuates product formation both kinetically and distributively. The molecular basis for this mechanistic imperfection is not understood. We have systematically analyzed the impact of replacing an AT domain of DEBS on acyl-AT formation, acyl-CoA:HS-NAc acyl transferase activity, acyl-CoA:ACP acyl transferase activity (nucleophile charging), acyl-SNAc:ketosynthase acyl transferase activity (electrophile charging), and beta-ketoacyl ACP synthase activity (condensation). As usual, domain junctions were located in interdomain regions flanking the AT domain. Kinetic analysis of hybrid modules containing either malonyl transferase or methylmalonyl transferase domains revealed a 15-20-fold decrease in overall turnover numbers of the hybrid modules as compared to the wild-type module. In contrast, both the activity and the specificity of the heterologous AT domains remained unaffected. Moreover, no defects could be detected in the ability of the heterologous AT domains to catalyze acyl-CoA:ACP acyl transfer. Single turnover studies aimed at directly probing the ketosynthase-catalyzed reaction led to two crucial findings. First, wild-type modules catalyzed chain elongation with comparable efficiency regardless of whether methylmalonyl-ACP or malonyl-ACP were the nucleophilic substrates. Second, chain elongation in all hybrid modules tested was seriously attenuated relative to the wild-type module. Our data suggest that, as currently practiced, the most deleterious impact of AT domain swapping is not on the substrate specificity. Rather, it is due to the impaired ability of the KS and ACP domains in the hybrid module to catalyze chain elongation. Consistent with this proposal, limited proteolysis of wild-type and hybrid modules showed major differences in cleavage patterns, especially in the region between the KR and ACP domains.  相似文献   

15.
Background: It has been proposed that Streptomyces malonyl CoA:holo acyl carrier protein transacylases (MCATs) provide a link between fatty acid and polyketide biosynthesis. Two recent studies have provided evidence that the presence of MCAT is essential for polyketide synthesis to proceed in reconstituted minimal polyketide synthases (PKSs). In contrast to this, we previously showed that the holo acyl carrier proteins (ACPs) from type II PKSs are capable of catalytic self -malonylation in the presence of malonyl CoA, which suggests that MCAT might not be necessary for polyketide biosynthesis.Results: We reconstituted a homologous actinorhodin (act) type II minimal PKS in vitro, When act holo-ACP is present in limiting concentrations, MCAT is required by the synthase complex in order for polyketide biosynthesis to proceed. When holo-ACP is present in excess, however, efficient polyketide synthesis proceeds without MCAT, The rate of polyketide production increases with holo-ACP concentration, but at low ACP concentration or equimolar ACP:KS:CLF (KS, ketosynthase; CLF, chain length determining factor) concentrations this rate is significantly lower than expected, indicating that free holo-ACP is sequestered by the KS/CLF complex.Conclusions: The rate of polyketide biosynthesis is dictated by the ratio of holo-ACP to KS and CLF, as well as by the total protein concentration, There is no absolute requirement for MCAT in polyketide biosynthesis in vitro, although the role of MCAT during polyketide synthesis in vivo remains an open question. MCAT might be responsible for the rate enhancement of malonyl transfer at very low free holo-ACP concentrations or it could be required to catalyse the transfer of malonyl groups from malonyl CoA to sequestered holo-ACP.  相似文献   

16.
Polyketide synthases (PKSs) usually employ a ketoreductase (KR) to catalyze the reduction of a β‐keto group, followed by a dehydratase (DH) that drives the dehydration to form a double bond between the α‐ and β‐carbon atoms. Herein, a DH*‐KR* involved in FR901464 biosynthesis was characterized: DH* acts on glyceryl‐S‐acyl carrier protein (ACP) to yield ACP‐linked pyruvate; subsequently KR* reduces α‐ketone that yields L ‐lactyl‐S‐ACP as starter unit for polyketide biosynthesis. Genetic and biochemical evidence was found to support a similar pathway that is involved in the biosynthesis of lankacidins. These results not only identified new PKS domains acting on different substrates, but also provided additional options for engineering the PKS starter pathway or biocatalysis.  相似文献   

17.
The pikromycin (Pik) polyketide synthase (PKS) from Streptomyces venezuelae comprises four multifunctional polypeptides (PikAI, PikAII, PikAIII, and PikAIV). This PKS can generate 12- and 14-membered ring macrolactones (10-deoxymethynolide and narbonolide, respectively) through the activity of its terminal modules (PikAIII and PikAIV). We performed a series of experiments involving the functional replacement of PikAIV in mutant strains with homodimeric and heterodimeric PikAIV modules to investigate the details of macrolactone ring size determination. The results suggest a new and surprising mechanism by which the penultimate hexaketide chain elongation intermediate is transferred from PikAIII ACP5 to PikAIV ACP6 before release by the terminal thioesterase domain. Elucidation of this chain transfer mechanism provides important new details about alternative macrolactone ring size formation in modular PKSs and contributes to the potential for rational design of structural diversity by combinatorial biosynthesis.  相似文献   

18.
Oligomer samples obtained by the anionic copolymerization of a bis(γ‐lactone), 2,8‐dioxa‐1‐methylbicyclo[3.3.0]octane‐3,7‐dione ( 1 ), and glycidyl phenyl ether with potassium tert‐butoxide have been analyzed by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. The MALDI‐TOF mass spectra of these cooligomers show well‐resolved signals that can be reliably assigned to linear, alternating cooligomers that have carboxylate chain ends or alkoxide chain ends and cyclic ones. The formation of these three series of cooligomers suggests that the polymerization process involves concomitant intermolecular transesterification and intramolecular back‐biting. The intramolecular back‐biting reaction causes the formation of cyclic cooligomers, whereas the intermolecular transesterification causes the reduction of the molecular weight and the transformation of the alkoxide active chain end into a carboxylate chain end. The MALDI‐TOF mass spectrometry study has shown that an excess of monomer 1 enhances the selectivity of propagation by increasing the probability of the attack of the alkoxide chain end to 1 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2643–2649, 2005  相似文献   

19.
Several new indolo‐ and benzofuromorphinans substituted at the positions 5 and 14 were prepared and tested in vitro by means of opioid‐receptor binding and functional ([35S]GTPγS binding) assays. All compounds 1 – 11 displayed high affinity for δ opioid‐binding sites (Table 1). Compound 4 proved to be an agonist, and all other compounds were antagonists. The presence of a Me group at position 5 induced no change in δ affinity (see 1 vs. 3 ), but decreased the μ and κ affinities. An EtO group at position 14 conferred a very high affinity and also high selectivity to δ opioid receptors (see 2 and 10 ). Chain elongation of the 14‐alkoxy group resulted in compounds with reduced δ affinity and selectivity (see 4 and 11 and also 5 – 9 ). The results of the present study indicate that the 5‐ and 14‐positions of indolo‐ and benzofuromorphinans represent critical sites that could be a trigger to develop new compounds with increased δ affinity and/or selectivity.  相似文献   

20.
Enzymatic core components from trans‐acyltransferase polyketide synthases (trans‐AT PKSs) catalyze exceptionally diverse biosynthetic transformations to generate structurally complex bioactive compounds. Here we focus on a group of oxygenases identified in various trans‐AT PKS pathways, including those for pederin, oocydins, and toblerols. Using the oocydin pathway homologue (OocK) from Serratia plymuthica 4Rx13 and N‐acetylcysteamine (SNAC) thioesters as test surrogates for acyl carrier protein (ACP)‐tethered intermediates, we show that the enzyme inserts oxygen into β‐ketoacyl moieties to yield malonyl ester SNAC products. Based on these data and the identification of a non‐hydrolyzed oocydin congener with retained ester moiety, we propose a unified biosynthetic pathway of oocydins, haterumalides, and biselides. By providing access to internal ester, carboxylate pseudostarter, and terminal hydroxyl functions, oxygen insertion into polyketide backbones greatly expands the biosynthetic scope of PKSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号