首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In recent years, continuous‐flow/microreactor processing for the preparation of colloidal nanocrystals has received considerable attention. The intrinsic advantages of microfluidic reactors have opened new opportunities for the size‐controlled synthesis of nanocrystals either in the laboratory or on a large scale. Herein, an experimentally simple protocol for the size‐tunable continuous‐flow synthesis of rather monodisperse CdSe quantum dots (QDs) is presented. CdSe QDs are manufactured by using cadmium oleate as cadmium source, selenium dioxide as selenium precursor, and 1‐octadecene as solvent. Exploiting selenium dioxide as selenium source and 1‐octadecene as solvent allows execution of the complete process in open air without any requirement for air‐free manipulations using a glove box or Schlenk line. Continuous‐flow processing is performed with a stainless steel coil of 1.0 mm inner diameter pumping the combined precursor solution through the reactor by applying a standard HPLC pump. The effect of different reaction parameters, such as temperature, residence time, and flow rate, on the properties of the resulting CdSe QDs was investigated. A temperature increase from 240 to 260 °C or an extension of the residence time from 2 to 20 min affords larger nanocrystals (range 3–6 nm) whereas the size distribution does not change significantly. Longer reaction times and higher temperatures result in QDs with lower quantum yields (range 11–28 %). The quality of the synthesized CdSe QDs was confirmed by UV/Vis and photoluminescence spectroscopy, small‐angle X‐ray scattering, and high‐resolution transmission electron microscopy. Finally, the potential of this protocol for large‐scale manufacturing was evaluated and by operating the continuous‐flow process for 87 min it was possible to produce 167 mg of CdSe QDs (with a mean diameter of 4 nm) with a quantum yield of 28 %.  相似文献   

3.
An active pharmaceutical ingredient (API) is any substance in a pharmaceutical product that is biologically active. That means the specific molecular entity is capable of achieving a defined biological effect on the target. These ingredients need to meet very strict limits; chemical and optical purity are considered to be the most important ones. A continuous-flow synthetic methodology which utilizes a continuously flowing stream of reactive fluids can be easily combined with photochemistry, which works with the chemical effects of light. These methods can be useful tools to meet these strict limits. Both of these methods are unique and powerful tools for the preparation of natural products or active pharmaceutical ingredients and their precursors with high structural complexity under mild conditions. This review shows some main directions in the field of active pharmaceutical ingredients’ preparation using continuous-flow chemistry and photochemistry with numerous examples of industry and laboratory-scale applications.  相似文献   

4.
Isolation of the most effective antimalarial drug, artemisinin, from the plant sweet wormwood, does not yield sufficient quantities to provide the more than 300 million treatments needed each year. The high prices for the drug are a consequence of the unreliable and often insufficient supply of artemisinin. Large quantities of ineffective fake drugs find a market in Africa. Semisynthesis of artemisinin from inactive biological precursors, either dihydroartemisinic acid (DHAA) or artemisinic acid, offers a potentially attractive route to increase artemisinin production. Conversion of the plant waste product, DHAA, into artemisinin requires use of photochemically generated singlet oxygen at large scale. We met this challenge by developing a one‐pot photochemical continuous‐flow process for the semisynthesis of artemisinin from DHAA that yields 65 % product. Careful optimization resulted in a process characterized by short residence times. A method to extract DHAA from the mother liquor accumulated during commercial artemisinin extractions, a material that is currently discarded as waste, is also reported. The synthetic continuous‐flow process described here is an effective means to supplement the limited availability of artemisinin and ensure increased supplies of the drug for those in need.  相似文献   

5.
Acid phosphatase, an enzyme that is able to catalyze the transfer of a phosphate group from cheap pyrophosphate to alcoholic substrates, was covalently immobilized on polymethacrylate beads with an epoxy linker (Immobeads‐150 or Sepabeads EC‐EP). After immobilization 70 % of the activity was retained and the immobilized enzyme was stable for many months. With the immobilized enzyme we were able to produce and prepare D ‐glucose‐6‐phosphate, N‐acetyl‐D ‐glucosamine‐6‐phosphate, allyl phosphate, dihydroxyacetone phosphate, glycerol‐1‐phosphate, and inosine‐5′‐monophosphate from the corresponding primary alcohol on gram scale using either a fed‐batch reactor or a continuous‐flow packed‐bed reactor.  相似文献   

6.
This article describes the design, optimisation and development of a continuous flow synthesis of N,N‐diethyl‐4‐(3‐fluorophenylpiperidin‐4‐ylidenemethyl)benzamide, a potent δ‐opioid receptor agonist developed by AstraZeneca. The process employs a sequence of flow‐based microreactors, with integrated purification employing solid‐supported reagents and in‐line IR analytical protocols using a newly developed ReactIR flow cell. With this monitoring device, initiation of the fourth input flow stream can be precisely controlled during the synthesis.  相似文献   

7.
Microwave heating in chemical reactions was first reported in 1986. There have since been many reports employing microwave heating in organic chemistry, where microwave heating has afforded higher yields of products in shorter time periods. However, such reactions are challenging to scale in batch due to the limited penetration depth of microwaves as well as the wave propagation dependence on cavity size. Continuous flow has addressed both these issues, enabling scalability of microwave processes. As such, a host of reports employing microwave flow chemistry have emerged, employing various microwave heating and reactor configurations in the context of either custom‐built or commercial apparatus. The focus of this review is to present the benefits of microwave heating in the context of continuous flow and to characterize the different types of microwave flow apparatus by their design (oscillator, cavity type and reactor vessel). We advocate the adoption of tunable, solid‐state oscillator single‐mode microwave flow reactors which are more versatile heaters, impart better process control and energy efficiency toward laboratory and larger‐scale synthetic chemistry applications.  相似文献   

8.
The generally accepted benefits of small lateral dimensions of microreactors (1 μm to 1 mm) enable a different way of performing synthetic chemistry: Extremely short contact times in the millisecond range can circumvent the need for performing highly exothermic and fast reactions at very low temperatures. In order to fully exploit this technology, such fast processes need to be redesigned and investigated for optimal reaction conditions, which can differ drastically from the ones traditionally applied. In a comprehensive study, we optimized the selective Swern–Moffatt oxidation of benzyl alcohol to benzaldehyde by varying five experimental parameters, including reaction time and temperature. Employing an ultrashort mixing and reaction time of only 32 ms, the optimal temperature was determined to be 70 °C, approximately 150 °C higher than in the conventional batch conditions. This remarkable difference shows both the potency of continuous‐flow chemistry as well as the urgency of a paradigm shift in reaction design for continuous‐flow conditions.  相似文献   

9.
Despite their usefulness as fluorophores and synthetic precursors, efficient and reliable routes to coumarin‐8‐carbaldehydes are lacking. We describe here a high‐yielding continuous flow synthesis that requires no manual intermediate purification or work‐up, giving access to multigram quantities of the aldehyde product.  相似文献   

10.
11.
Microreactor technology and continuous flow processing in general are key features in making organic synthesis both more economical and environmentally friendly. When preformed under a high‐temperature/pressure process intensification regime many transformations originally not considered suitable for flow synthesis owing to long reaction times can be converted into high‐speed flow chemistry protocols that can operate at production‐scale quantities. This Focus Review summarizes the state of the art in high‐temperature/pressure microreactor technology and provides a survey of successful applications of this technique from the recent synthetic organic chemistry literature.  相似文献   

12.
Continuous organocatalysis : Fast aldol and Mannich reactions require less catalyst when conducted in a microreactor. A proline tetrazole derivative (5–10 mol %) catalyzes asymmetric aldol reactions between various aromatic aldehydes and ketones in microreactor at 60 °C with reaction times ranging from 10 to 30 min.

  相似文献   


13.
An automated sequential approach for the generation and reactions of 3‐hydroxymethylindoles in continuous‐flow microreactors is described. Consecutive halogen–magnesium exchanges of four 3‐iodoindoles followed by addition to three aldehydes provided twelve 3‐hydroxymethylindoles in a multi‐microreactor setup. The synthetic flow strategy could be coupled with an in line continuous liquid–liquid extraction workup protocol for each reaction. Further elaboration of each of these indoles within the fluidic setup was achieved by acid‐catalysed nucleophilic substitutions with allyltrimethylsilane and methanol used as nucleophiles. Overall, a set of four 3‐iodoindoles was converted into thirty‐six indole derivatives by a range of transformations including iodo–magnesium exchange/electrophile trapping and acid‐catalysed nucleophilic substitution in a fully automated sequential fashion.  相似文献   

14.
14‐Hydroxymorphinone is converted to noroxymorphone, the immediate precursor of important opioid antagonists, such as naltrexone and naloxone, in a three‐step reaction sequence. The initial oxidation of the N‐methyl group in 14‐hydroxymorphinone with in situ generated colloidal palladium(0) as the catalyst and molecular oxygen as the terminal oxidant constitutes the key transformation in this new route. This oxidation results in the formation of an unexpected oxazolidine ring structure. Subsequent hydrolysis of the oxazolidine under reduced pressure followed by hydrogenation in a packed‐bed flow reactor using palladium(0) as the catalyst provides noroxymorphone in high purity and good overall yield. To overcome challenges associated with gas–liquid reactions with molecular oxygen, the key oxidation reaction was translated to a continuous‐flow process.  相似文献   

15.
Reported is the electrophilic amination of functional organolithium intermediates with well‐designed aminating reagents under mild reaction conditions using flow microreactors. The aminating reagents were optimized to achieve efficient C?N bond formation without using any catalyst. The electrophilic amination reactions of functionalized aryllithiums were successfully conducted under mild reaction conditions, within 1 minute, by using flow microreactors. The aminating reagent was also prepared by the flow method. Based on stopped‐flow NMR analysis, the reaction time for the preparation of the aminating reagent was quickly optimized without the necessity of work‐up. Integrated one‐flow synthesis consisting of the generation of an aryllithium, the preparation of an aminating reagent, and their combined reaction was successfully achieved to give the desired amine within 5 minutes of total reaction time.  相似文献   

16.
A general, rapid, and efficient method for the copper‐catalyzed Finkelstein reaction of (hetero)aromatics has been developed using continuous flow to generate a variety of aryl iodides. The described method can tolerate a broad spectrum of functional groups, including N‐H and O‐H groups. Additionally, in lieu of isolation, the aryl iodide solutions were used in two distinct multistep continuous‐flow processes (amidation and Mg–I exchange/nucleophilic addition) to demonstrate the flexibility of this method.  相似文献   

17.
The heterogeneous proline‐catalyzed aldol reaction was investigated under continuous‐flow conditions by means of a packed‐bed microreactor. Reaction‐progress kinetic analysis (RPKA) was used in combination with nonlinear chromatography for the interpretation, under synthetically relevant conditions, of important mechanistic aspects of the heterogeneous catalytic process at a molecular level. The information gathered by RPKA and nonlinear chromatography proved to be highly complementary and allowed for the assessment of optimal operating variables. In particular, the determination of the rate‐determining step was pivotal for optimizing the feed composition. On the other hand, the competitive product inhibition was responsible for the unexpected decrease in the reaction yield following an apparently obvious variation in the feed composition. The study was facilitated by a suitable 2D instrumental arrangement for simultaneous flow reaction and online flow‐injection analysis.  相似文献   

18.
19.
Using a flow microreactor system, carbamoyllithium compounds were successfully generated and used for reactions with electrophiles to give various amides, including α‐ketoamides. The present method could be applied to the three‐component synthesis of functionalized α‐ketoamides using a carbamoyllithium compound, methyl chloroformate, and a functionalized organolithium reagent.  相似文献   

20.
Mizoroki–Heck couplings of aryl iodides and bromides with butyl acrylate were investigated as model systems to perform transition‐metal‐catalyzed transformations in continuous‐flow mode. As a suitable ligandless catalyst system for the Mizoroki–Heck couplings both heterogeneous and homogeneous Pd catalysts (Pd/C and Pd acetate) were considered. In batch mode, full conversion with excellent selectivity for coupling was achieved applying high‐temperature microwave conditions with Pd levels as low as 10?3 mol %. In continuous‐flow mode with Pd/C as a catalyst, significant Pd leaching from the heterogeneous catalyst was observed as these Mizoroki–Heck couplings proceed by a homogeneous mechanism involving soluble Pd colloids/nanoparticles. By applying low levels of Pd acetate as homogeneous Pd precatalyst, successful continuous‐flow Mizoroki–Heck transformations were performed in a high‐temperature/pressure flow reactor. For both aryl iodides and bromides, high isolated product yields of the cinnamic esters were obtained. Mechanistic issues involving the Pd‐catalyzed Mizoroki–Heck reactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号