首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of thiacalix[n]dithiothiophenes (n=4–10) was prepared by a facile method and X‐ray analysis was used to determine the molecular structures of square‐ (4‐mer) and pentagonal‐shaped macrocycles (5‐mer). In the cyclic voltammograms, reversible multielectron redox processes, which are due to electronic delocalization, were observed at low oxidation potentials. The cyclic 4‐mer acted as a “Janus‐head” cavitand for two C60 molecules, whereas the 5‐ and 6‐mer formed stable 1:1 complexes with C60 .  相似文献   

2.
Novel phenylene-bridged zinc bisporphyrins (1-4), fulleropyrrolidines (C60-m, C60-h) and their N-oxides (C60-mo, C60-ho) were synthesized. The fluorescence quenching processes of bisporphyrins in toluene solution by fulleropyrrolidines and their N-oxides were investigated by steady-state fluorescence spectra. The fluorescence quenching constants proved that the fluorescence quenching ability was decreased as reduction of the pyrrolidine functional groups of fullerene surface: C60-h〉C60-m〉C60, and the fluorescence quenching ability was increased about 1.3-7.4 times by utilizing fulleropyrrolidine N-oxides (C60-mo, C60-ho) compared to fulleropyrrolidine compounds (C60-m, C60-h). The results revealed photoinduced electron transfer (PET) efficiency between bispor-phyrin and fullerene derivatives could be tunable by change of functional groups on fullerene surface.  相似文献   

3.
A series of mono‐ (MPTTF) and bis(pyrrolo)tetrathiafulvalene (BPTTF) derivatives tethered to one or two C60 moieties was synthesized and characterized. The synthetic strategy for these dumbbell‐shaped compounds was based on a 1,3‐dipolar cycloaddition reaction between aldehyde‐functionalized MPTTF/BPTTF derivatives, two different tailor‐made amino acids, and C60. Electronic communication between the MPTTF/BPTTF units and the C60 moieties was studied by a variety of techniques including cyclic voltammetry and absorption spectroscopy. These solution‐based studies indicated no observable electronic communication between the MPTTF/BPTTF units and the C60 moieties. In addition, femtosecond and nanosecond transient absorption spectroscopy revealed, rather surprisingly, that no charge transfer from the MPTTF/BPTTF units to the C60 moieties takes place on excitation of the fullerene moiety. Finally, it was shown that the MPTTF–C60 and C60–BPTTF‐C60 dyad and triad molecules formed self‐assembled monolayers on a Au(111) surface by anchoring to C60.  相似文献   

4.
Representatives of two classes of hexakis‐adducts of C60 were prepared by templated synthesis strategies. Compound 8 with a dipyridylmethano addend in a pseudo‐octahedral addition pattern was obtained by DMA‐templated addition (DMA=9,10‐dimethylanthracene; Scheme 1) and served as the starting material for the first supramolecular fullerene dimer 2 . Hexakis‐adduct 12 also possesses a pseudo‐octahedral addition pattern and was obtained by a sequence of tether‐directed remote functionalization, tether removal, and regioselective bis‐functionalization (Scheme 2). With its two diethynylmethano addends in trans‐1 position, it is a precursor for fascinating new oligomers and polymers that feature C60 moieties as part of the polymeric backbone (Fig. 1). With the residual fullerene π‐electron chromophore reduced to a `cubic cyclophane'‐type sub‐structure (Fig. 4), and for steric reasons, 8 and 12 no longer display electrophilic reactivity. As a representative of the second class of hexakis‐adducts, (±)‐ 1 , which features six addends in a distinct helical array along an equatorial belt, was prepared by a route that involved two sequential tether‐directed remote functionalization steps (Schemes 3 and 5). In compound (±)‐ 1 , π‐electron conjugation between the two unsubstituted poles of the carbon sphere is maintained via two (E)‐stilbene‐like bridges (Fig. 4). As a result, (±)‐ 1 features very different chemical reactivity and physical properties when compared to hexakis‐adducts with a pseudo‐octahedral addition pattern. Its reduction under cyclic voltammetric conditions is greatly facilitated (by 570 mV), and it readily undergoes additional, electronically favored Bingel additions at the two sterically well‐accessible central polar 6‐6 bonds under formation of heptakis‐ and octakis‐adducts, (±)‐ 30 and (±)‐ 31 , respectively (Scheme 6). The different extent of the residual π‐electron delocalization in the fullerene sphere is also reflected in the optical properties of the two types of hexakis‐adducts. Whereas 8 and 12 are bright‐yellow (end‐absorption around 450 nm), compound (±)‐ 1 is shiny‐red, with an end‐absorption around 600 nm. This study once more demonstrates the power of templated functionalization strategies in fullerene chemistry, providing addition patterns that are not accessible by stepwise synthetic approaches.  相似文献   

5.
An asymmetric total synthesis of [13C4]‐anatoxin‐a ([13C4]‐ 1 ) has been developed from commercially available ethyl [13C4]‐acetoacetate ([13C4]‐ 15 ). The unique requirements associated with isotope incorporation inspired a new, robust, and highly scalable route, providing access to 0.110 g of this internal standard for use in the detection and precise quantification of anatoxin‐a in freshwater. A highlight of the synthesis is a method that leverages a cyclic iminium ion racemization to achieve dynamic kinetic resolution in an enantioselective Morita–Baylis–Hillman (MBH) cyclization.  相似文献   

6.
Two new artificial mimics of the photosynthetic antenna‐reaction center complex have been designed and synthesized (BDP‐H2P‐C60 and BDP‐ZnP‐C60). The resulting electron‐donor/acceptor conjugates contain a porphyrin (either in its free‐base form (H2P) or as Zn‐metalated complex (ZnP)), a boron dipyrrin (BDP), and a fulleropyrrolidine possessing, as substituent of the pyrrolidine nitrogen, an ethylene glycol chain terminating in an amino group C60‐X‐NH2 (X=spacer). In both cases, the three different components were connected by s‐triazine through stepwise substitution reactions of cyanuric chloride. In addition to the facile synthesis, the star‐type arrangement of the three photo‐ and redox‐active components around the central s‐triazine unit permits direct interaction between one another, in contrast to reported examples in which the three components are arranged in a linear fashion. The energy‐ and electron‐transfer properties of the resulting electron‐donor/acceptor conjugates were investigated by using UV/Vis absorption and emission spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. Comparison of the absorption spectra and cyclic voltammograms of BDP‐H2P‐C60 and BDP‐ZnP‐C60 with those of BDP‐H2P, BDP‐ZnP and BDP‐C60, which were used as references, showed that the spectroscopic and electrochemical properties of the individual constituents are basically retained, although some appreciable shifts in terms of absorption indicate some interactions in the ground state. Fluorescence lifetime measurements and transient absorption experiments helped to elucidate the antenna function of BDP, which upon selective excitation undergoes a rapid and efficient energy transfer from BDP to H2P or ZnP. This is then followed by an electron transfer to C60, yielding the formation of the singlet charge‐separated states, namely BDP‐H2P .+‐ C60 .? and BDP‐ZnP .+‐ C60 . ?. As such, the sequence of energy transfer and electron transfer in the present models mimics the events of natural photosynthesis.  相似文献   

7.
Present work demonstrates the fabrication of new and facile sandwich‐type electrochemical immunosensor based on palladium nanoparticles (PdNPs), polyaniline (PANI) and fullerene‐C60 nanocomposite film modified glassy carbon electrode (PdNP@PANI‐C60/GCE) for ultrasensitive detection of Prostate‐specific antigen (PSA) biomarker. PdNP@PANI‐C60 was electrochemically synthesized on GCE and used as an electroactive substrate. PdNP@PANI‐C60 was characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Primary antibody anti‐PSA (Ab1) was covalently immobilized on PdNP@PANI‐C60/GCE using NHS/EDC linkers. In the presence of PSA antigen, horseradish peroxidase secondary antibody (HRP‐Ab2) was brought into the surface of the electrode, developing stable amplified signals of H2O2 reduction. Under the optimal conditions, a linear curve for determination of PSA at the proposed immunosensor was 1.6×10?4 ng.mL?1 to 38 ng.mL?1 with a limit of detection (LOD) of 1.95×10?5 ng.mL?1. The proposed immunosensor was successfully validated in serum and urine samples towards PSA detection with satisfactory and acceptable results.  相似文献   

8.
Five novel surfactants were prepared by modifying the three hydroxy groups of sodium cholate with triethylene glycol chains endcapped with an amide ( SC‐C1 , SC‐ n C4 , and SC‐ n C5 ) or a carbamoyl group ( SC‐O n C4 and SC‐O t C4 ). The phase behavior of aqueous mixtures of these surfactants with 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphatidylcholine (DMPC) was systematically studied by 31P NMR spectroscopy. The surfactants endcapped with carbamate groups ( SC‐O n C4 and SC‐O t C4 ) formed magnetically alignable bicelles over unprecedentedly wide ranges of conditions, in terms of temperature (from 21–23 to >90 °C), lipid/surfactant ratio (from 5 to 8), total lipid content (5–20 wt %), and lipid type [DMPC, 1,2‐dilauroyl‐sn‐glycero‐3‐phosphatidylcholine (DLPC), or 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphatidylcholine (POPC)]. In conjunction with appropriate phospholipids, the carbamate‐endcapped surfactants afforded unique bicelles, characterized by exceptional thermal stabilities (from 0 to >90 °C), biomimetic lipid compositions (DMPC/POPC=25:75 to 50:50), and extremely large 2H quadrupole splittings (up to 71 Hz).  相似文献   

9.
The novel monosubstituted benzoquinone compounds 3e , 3g , 3h ; 2,5‐O‐ substituted benzoquinone compounds 4a , 4b , 4c , 4d , 4e 4g and known compound 4h and 2,6‐O‐ substituted benzoquinone compounds 5e , 5f , 5g , 5h were obtained by the reaction of p‐chloranil ( 1 ) and related alcohol compounds in potassium carbonate (K2CO3) solution of acetonitrile or chloroform with Et3N. The novel cyclic compounds 7 , 8 and 10 , 11 were obtained from the reaction of p‐chloranil ( 1 ) and diols in potassium carbonate (K2CO3) solution of acetonitrile at room temperature. The structures of novel compounds were characterized by using micro analysis, FT‐IR, 1H‐NMR, 13C‐NMR, MS and cyclic voltammetry.  相似文献   

10.
The potential of pyrimidines to serve as ditopic halogen‐bond acceptors is explored. The halogen‐bonded cocrystals formed from solutions of either 5,5′‐bipyrimidine (C8H6N4) or 1,2‐bis(pyrimidin‐5‐yl)ethyne (C10H6N4) and 2 molar equivalents of 1,3‐diiodotetrafluorobenzene (C6F4I2) have a 1:1 composition. Each pyrimidine moiety acts as a single halogen‐bond acceptor and the bipyrimidines act as ditopic halogen‐bond acceptors. In contrast, the activated pyrimidines 2‐ and 5‐{[4‐(dimethylamino)phenyl]ethynyl}pyrimidine (C14H13N3) are ditopic halogen‐bond acceptors, and 1:1 halogen‐bonded cocrystals are formed from 1:1 mixtures of each of the activated pyrimidines and either 1,2‐ or 1,3‐diiodotetrafluorobenzene. A 1:1 cocrystal was also formed between 2‐{[4‐(dimethylamino)phenyl]ethynyl}pyrimidine and 1,4‐diiodotetrafluorobenzene, while a 2:1 cocrystal was formed between 5‐{[4‐(dimethylamino)phenyl]ethynyl}pyrimidine and 1,4‐diiodotetrafluorobenzene.  相似文献   

11.
Novel carbazole‐containing acetylene monomer, 1‐(3‐ethynyl‐9‐carbazoyl)?4‐(9‐carbazoyl)benzene 1 was synthesized, polymerized, and copolymerized with phenylacetylene ( PA ) using [(nbd)RhCl]2‐Et3N, Rh+(nbd)[η6‐C6H5B(C6H5)3], and WCl6‐Ph4Sn as catalysts. Polymers with number‐average molecular weights ranging from 7800 to 33,200 were obtained in 60%–quantitative yields. The absorption band edge of poly( 1 ‐co‐ PA ) ( 1 :PA = 8:2) was positioned at a wavelength longer than those of 1 and polyvinylcarbazole. Poly( 1 ‐co‐ PA ) ( 1:PA = 8:2) emitted fluorescence with 60% quantum yield. Poly( 1 ‐co‐ PA ) ( 1:PA = 8:2) worked as a hole transport material of an OLED with tris(8‐hydroxyquinoline)aluminum (Alq3) as an emission material. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1245–1251  相似文献   

12.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

13.
The reactions of [Re(CO)6]+, [FeCp(CO)2CS]+ and [FeCp(CNPh)3]+ with the metallo nitrile ylides [M{C+=N–C(H)CO2Et}(CO)5] (M = Cr, W) and the chromio nitrile imine [Cr{C+=N–NH}(CO)5] (generated by mono‐α‐deprotonation of the parent isocyanide complexes) to give neutral 5‐metallated 1,3‐oxazolin‐ ( 1 ), 1,3‐thiazolin‐ ( 2 ), imidazolin‐ ( 3 , 4 ), 1,3,4‐oxdiazolin‐ ( 5 ), 1,3,4‐thiadiazolin‐ ( 6 ) and 1,3,4‐triazolin‐2‐ylidene ( 8 ) chromium and tungsten complexes represent the first all‐organometallic versions of Huisgen’s 1,3‐dipolar cycloadditions. The formation of 6 and 8 is accompanied by partial decomposition to (OC)5Cr–C≡N–FeCpL2 {L = CO ( 7 ), CNPh ( 9 )}. The structures of 4a and 5 have been characterized by X‐ray diffraction.  相似文献   

14.
《化学:亚洲杂志》2017,12(14):1824-1835
An adaptable cyclic porphyrin dimer with highly flexible linkers has been used as an artificial molecular container that can efficiently encapsulate various aromatic guests (TCNQ/C60/C70) through strong π–π interactions by adjusting its cavity size and conformation. The planar aromatic guest (TCNQ) can be easily and selectively exchanged with larger aromatic guests (C60/C70). During the guest‐exchange process, the two porphyrin rings switch their relative orientation according to the size and shape of the guests. This behavior of the cyclic container has been thoroughly investigated by using UV/Vis spectroscopy, NMR spectroscopy, and X‐ray crystal structure determination of the host–guest assemblies. The electrochemical and photophysical studies demonstrated the occurrence of photoinduced electron transfer from bisporphyrin to TCNQ/C60/C70 in the respective host–guest assemblies. The cyclic host can form complexes with C60 and C70 with association constants of (2.8±0.2)×105 and (1.9±0.3)×108 m −1, respectively; the latter value represents the highest binding affinity for C70 reported so far for zinc(II) bisporphyrinic receptors. This high selectivity for the binding of C70 versus C60 allows the easy extraction and efficient isolation of C70 from a C60/C70 fullerene mixture. Experimental evidence was substantiated by DFT calculations.  相似文献   

15.
Holes are inevitable in borospherenes. The surface topography of B40 and its π MOs isolobal to benzene allow for better η7‐, η6‐ and η3‐ exohedral complexation with transition metal fragments than it is possible with C60 and arenes. η7‐complexes of B40 is lower in energy than the η6‐complexes for metal fragments such as C5H5Mn, C4H4Fe, and C3H3Co that have relatively diffuse frontier orbitals. The fragment C6H6Cr prefers η6‐coordination. Near‐isodesmic equations based on density functional theory computations of the transition metal complexes of B40, C60 and C6H6 support these anticipations. Transition metal complexation increases the stability of B40.  相似文献   

16.
The first hypercoordinate sila[1]ferrocenophanes [fcSiMe(2‐C6H4CH2NMe2)] ( 5 a ) and [fcSi(CH2Cl)(2‐C6H4CH2NMe2)] ( 5 b ) (fc=(η5‐C5H4)Fe(η5‐C5H4)) were synthesized by low‐temperature (?78 °C) reactions of Li[2‐C6H4CH2NMe2] with the appropriate chlorinated sila[1]ferrocenophanes ([fcSiMeCl] ( 1 a ) and [fcSi(CH2Cl)Cl] ( 1 d ), respectively). Single‐crystal Xray diffraction studies revealed pseudo‐trigonal bipyramidal structures for both 5 a and 5 b , with one of the shortest reported Si???N distances for an sp3‐hybridized nitrogen atom interacting with a tetraorganosilane detected for 5 a (2.776(2) Å). Elongated Si? Cipso bonds trans to the donating NMe2 arms (1.919(2) and 1.909(2) Å for 5 a and 5 b , respectively) were observed relative to both the non‐trans bonds ( 5 a : 1.891(2); 5 b : 1.879(2) Å) and the Si? Cipso bonds of the non‐hypercoordinate analogues ([fcSiMePh] ( 1 b ): 1.879(4), 1.880(4) Å; [fcSi(CH2Cl)Ph] ( 1 e ): 1.881(2), 1.884(2)). Solution‐state fluxionality of 5 a and 5 b , suggestive of reversible coordination of the NMe2 group to silicon, was demonstrated by means of variable‐temperature NMR studies. The ΔG of the fluxional processes for 5 a and 5 b in CD2Cl2 were estimated to be 35.0 and 37.6 kJ mol?1, respectively (35.8 and 38.3 kJ mol?1 in [D8]toluene). The quaternization of 5 a and 5 b by MeOTf, to give [fcSiMe(2‐C6H4CH2NMe3)][OTf] ( 7 a‐ OTf) and [fcSi(CH2Cl)(2‐C6H4CH2NMe3)][OTf] ( 7 b‐ OTf), respectively, supported the reversibility of NMe2 coordination at the silicon center as the source of fluxionality for 5 a and 5 b . Surprisingly, low room‐temperature stability was detected for 5 b due to its tendency to intramolecularly cyclize and form the spirocyclic [fcSi(cyclo‐CH2NMe2CH2C6H4)]Cl ( 9 ‐Cl). This process was observed in both solution and the solid state, and isolation and Xray characterization of 9 ‐Cl was achieved. The model compound, [Fc2Si(2‐C6H4CH2NMe2)2] ( 8 ), synthesized through reaction of [Fc2SiCl2] with two equivalents of Li[2‐C6H4CH2NMe2] at ?78 °C, showed a lack of hypercoordination in both the solid state and in solution (down to ?80 °C). This suggests that either the reduced steric hindrance around Si or the unique electronics of the strained sila[1]ferrocenophanes is necessary for hypercoordination to occur.  相似文献   

17.
Reactions of the title diphosphines [(η5‐C5H4PPh2)Re(NO)(PPh3)((CH2)nPPh2)] (n=0, (R)‐ 1 ; n=1, racemic or (S)‐ 2 ) with [PdCl2(PhCN)2] give the palladium/rhenium chelate complexes [(η5‐C5H4PPh2)Re(NO)(PPh3)((μ‐CH2)nPPh2)PdCl2] (n=0, (S)‐ 5 ; n=1, racemic or (S)‐ 6 ) in 75–92% yield. The crystal structure of racemic 6 shows a twisted‐boat conformation of the chelate ring, giving a chiral pocket very different from that in a related rhodium chelate. However, NOE experiments suggest a similar ensemble of conformations in solution. Catalysts are generated from various combinations of a) Pd(OAc)2 and (R)‐ 1 or (S)‐ 2 (1 : 2), b) (S)‐ 5 or (S)‐ 6 and (R)‐ 1 or (S)‐ 2 (1 : 2), or c) (i‐Bu)2AlH with the preceding recipes. These factors effect the Heck arylation of 2,3‐dihydrofuran with phenyl trifluoromethylsulfonate. In contrast to analogous reactions with (R)‐binap (=(R)‐2,2′‐bis(diphenylphosphanyl)‐1,1′‐binaphthalene), the major product 2‐phenyl‐2,3‐dihydrofuran is nearly racemic (≤12% ee).  相似文献   

18.
Hydrolysereak‐Syntheses, Properties and Molecular Structures of the Heterobimetalorganics of the four‐valued Germanium with the 2‐(Dimethylaminomethyl)ferrocenyl Ligand FcN (η5‐C5H5)Fe[η5‐C5H3(CH2NMe2)‐2] The heterobimetallic lithiumorganyl [2‐(dimethylaminomethyl)ferrocenyl] lithium, FcNLi, reacts with germanium(IV) chloride, GeCl4, under the formation of heterobimetallic germanium(IV) organyls (FcN)nGeCl4‐n (n = 2 ( 1 ), 3 ( 2 )). The heterobimetallic organogermanol (FcN)3GeOH ( 3 ) is formed at hydrolysis of 2 . A detailed characterization of the defined compounds 1 — 3 was carried out by single crystal X‐ray analyses, NMR‐ and mass‐spectrometry.  相似文献   

19.
New covalently C60‐conjugated phthalocyanine (Pc) analogues in which the Pc and C60 components are connected by means of a four‐membered ring have been synthesized by taking advantage of a [2+2] cycloaddition reaction of C60 with benzyne units generated from either a phthalocyanine derivative ( 8 ) or its precursor ( 1 ). The reaction of 1 with PhI(OAc)2 and trifluoromethanesulfonic acid (TfOH) followed by the [2+2] cycloaddition of C60 in the presence of tetra‐n‐butylammonium fluoride (TBAF) yielded the C60‐substituted Pc precursor ( 3 ). Mixed condensation of 3 and 4,5‐dibutylsulfonylphthalonitrile ( 4 ) in a thermally promoted template reaction using a nickel salt successfully gave the Pc–C60 conjugate ( 5 ). Results of mass spectrometry and 1H and 13C NMR spectroscopy clearly indicate the formation of the anticipated Pc–C60 conjugate. Direct coupling of C60 with the Pc analogue that contained eight peripheral trimethylsilyl (TMS) groups ( 8 ) also proceeded successfully, such that mono and bis C60‐adducts were detected by their mass, although the isolation of each derivative was difficult. The absorption and magnetic circular dichroism (MCD) spectra of 5 and the reference compound ( 7 ) differ from each other in the Q‐band region, thereby suggesting that the presence of the C60 moiety affects the electronic structure of the conjugate. The reduction and oxidation potentials of 5 and 7 obtained by cyclic voltammetry are comparative, except for the C60‐centered reduction couple at ?1.53 V versus Fc+/Fc in o‐dichlorobenzene (o‐DCB). A one‐electron reduction of 5 and 7 in tetrahydrofuran (THF) by using the sodium mirror technique results in the loss of band intensity in the Q‐band region, whereas the characteristic marker bands for Pc‐ring‐centered reduction appear at around 430, 600, and 900 nm for both compounds. The final spectral shapes of 5 and 7 upon the reduction resemble each other, thus indicating that no significant molecular orbital (MO) interactions between the C60 and Pc units are present for the reduced species of 5 . In contrast, the oxidized species of 5 and 7 generated by the addition of NOBF4 in CH2Cl2 show significantly different absorption spectra from each other. Whereas the broad bands at approximately 400–550 nm of 7 + are indicative of the cationic π‐radical species of metallo‐Pcs and can be assigned to a transition from a low‐lying MO to the half‐filled MO, no corresponding bands were observed for 5 +. These spectral characteristics have been tentatively assigned to the delocalized occupied frontier MOs for 5 +. The experimental results are broadly supported by DFT calculations.  相似文献   

20.
An efficient cyclization toward a cyclic tetramer of dithienothiophene (DTT) linked by divalent selenium atoms has been developed via palladium‐catalyzed coupling reaction of (nBu3Sn)2Se. X‐ray analysis revealed its highly symmetrical structure had an alternate arrangement of DTT units. There are several Se???π interactions forming a supramolecular network leading to large void channel space. The cyclic tetramer possesses moderate electron‐donating ability. Furthermore, the cyclic tetramer undergoes complexation with C60 in a 1:2 ratio in the solid state to give a highly symmetrical three‐dimensional array of C60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号