首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
A general approach toward extremely stretchable and highly conductive electrodes was developed. The method involves wrapping a continuous carbon nanotube (CNT) thin film around pre‐stretched elastic wires, from which high‐performance, stretchable wire‐shaped supercapacitors were fabricated. The supercapacitors were made by twisting two such CNT‐wrapped elastic wires, pre‐coated with poly(vinyl alcohol)/H3PO4 hydrogel, as the electrolyte and separator. The resultant wire‐shaped supercapacitors exhibited an extremely high elasticity of up to 350 % strain with a high device capacitance up to 30.7 F g−1, which is two times that of the state‐of‐the‐art stretchable supercapacitor under only 100 % strain. The wire‐shaped structure facilitated the integration of multiple supercapacitors into a single wire device to meet specific energy and power needs for various potential applications. These supercapacitors can be repeatedly stretched from 0 to 200 % strain for hundreds of cycles with no change in performance, thus outperforming all the reported state‐of‐the‐art stretchable electronics.  相似文献   

2.
3.
A stretchable wire‐shaped lithium‐ion battery is produced from two aligned multi‐walled carbon nanotube/lithium oxide composite yarns as the anode and cathode without extra current collectors and binders. The two composite yarns can be well paired to obtain a safe battery with superior electrochemical properties, such as energy densities of 27 Wh kg?1 or 17.7 mWh cm?3 and power densities of 880 W kg?1 or 0.56 W cm?3, which are an order of magnitude higher than the densities reported for lithium thin‐film batteries. These wire‐shaped batteries are flexible and light, and 97 % of their capacity was maintained after 1000 bending cycles. They are also very elastic as they are based on a modified spring structure, and 84 % of the capacity was maintained after stretching for 200 cycles at a strain of 100 %. Furthermore, these novel wire‐shaped batteries have been woven into lightweight, flexible, and stretchable battery textiles, which reveals possible large‐scale applications.  相似文献   

4.
Graphene has attracted a great deal of attention in recent years due to its unusual electronic, mechanical, and thermal properties. Exploiting graphene properties in a variety of applications requires a chemical approach for the large‐scale production of high‐quality, processable graphene sheets (GS), which has remained an unanswered challenge. Herein, we report a rapid one‐pot supercritical fluid (SCF) exfoliation process for the production of high‐quality, large‐scale, and processable graphene for technological applications. Direct high‐yield conversion of graphite crystals to GS is possible under SCF conditions because of the high diffusivity and solvating power of SCFs, such as ethanol, N‐methyl‐pyrrolidone (NMP), and DMF. For the first time, we report a one‐pot direct conversion of graphite crystals to a high yield of graphene sheets in which about 90–95 % of the exfoliated sheets are <8 layers with approximately 6–10 % monolayers and the remaining 5–10 % are ≥10 layers.  相似文献   

5.
6.
We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid‐state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline–polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g?1). The flexible solid‐state supercapacitor based on PPH provides a large capacitance (306 mF cm?2 and 153 F g?1) and a high energy density of 13.6 Wh kg?1, superior to other flexible supercapacitors. The robustness of the PPH‐based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge–discharge cycles. The high activity and robustness enable the PPH‐based supercapacitor as a promising power device for flexible electronics.  相似文献   

7.
The fabrication of flexible, stretchable and rechargeable devices with a high energy density is critical for next‐generation electronics. Herein, fiber‐shaped Zn–air batteries, are realized for the first time by designing aligned, cross‐stacked and porous carbon nanotube sheets simultaneously that behave as a gas diffusion layer, a catalyst layer, and a current collector. The combined remarkable electronic and mechanical properties of the aligned carbon nanotube sheets endow good electrochemical properties. They display excellent discharge and charge performances at a high current density of 2 A g?1. They are also flexible and stretchable, which is particularly promising to power portable and wearable electronic devices.  相似文献   

8.
A facile and sustainable procedure for the synthesis of nitrogen‐doped hierarchical porous carbons with a three‐dimensional interconnected framework (NHPC‐3D) was developed. The strategy, based on a colloidal crystal‐templating method, utilizes nitrogenous dopamine as the precursor due to its unique properties, including self‐polymerization under mild alkaline conditions, coating onto various surfaces, a high carbonization yield, and well‐preserved nitrogen doping after heat treatment. The obtained NHPC‐3D possesses a high surface area of 1056 m2 g?1, a large pore volume of 2.56 cm3 g?1, and a high nitrogen content of 8.2 wt %. The NHPC‐3D is implemented as the electrode material of a supercapacitor and exhibits a specific capacitance as high as 252 F g?1 at a current density of 2 A g?1. The device also shows a high capacitance retention of 75.7 % at a higher current density of 20 A g?1 in aqueous electrolyte due to a sufficient surface area for charge accommodation, reversible pseudocapacitance, and minimized ion‐transport resistance, as a result of the advantageous interconnected hierarchical porous texture. These results showcase NHPC‐3D as a promising candidate for electrode materials in supercapacitors.  相似文献   

9.
A major goal of heterogeneous catalysis is to optimize catalytic selectivity. Selectivity is often limited by the fact that most heterogeneous catalysts possess sites with a range of reactivities, resulting in the formation of unwanted by‐products. The construction of surface‐confined covalent organic frameworks (sCOFs) on catalytically active surfaces is a desirable strategy, as pores can be tailored to operate as catalytic nanoreactors. Direct modification of reactive surfaces is impractical, because the strong molecule–surface interaction precludes monomer diffusion and formation of extended architectures. Herein, we describe a protocol for the formation of a high‐quality sCOF on a Pd‐rich surface by first fabricating a porous sCOF through Ullmann coupling on a Au‐rich bimetallic surface on Pd(111). Once the sCOF has formed, thermal processing induces a Pd‐rich surface while preserving the integrity of the sCOF architecture, as evidenced by scanning tunneling microscopy and titration of Pd sites through CO adsorption.  相似文献   

10.
Within the last two decades, dynamic covalent chemistry (DCC) has emerged as an efficient and versatile strategy for the design and synthesis of complex molecular systems in solution. While early examples of supramolecularly assisted covalent synthesis at surfaces relied strongly on kinetically controlled reactions for post‐assembly covalent modification, the DCC method takes advantage of the reversible nature of bond formation and allows the generation of the new covalently bonded structures under thermodynamic control. These structurally complex architectures obtained by means of DCC protocols offer a wealth of solutions and opportunities in the generation of new complex materials that possess sophisticated properties. In this focus review we examine the formation of covalently bonded imine‐based discrete nanostructures as well as one‐dimensional (1D) polymers and two‐dimensional (2D) covalent organic frameworks (COFs) physisorbed on solid substrates under various experimental conditions, for example, under ultra‐high vacuum (UHV) or at the solid–liquid interface. Scanning tunneling microscopy (STM) was used to gain insight, with a sub‐nanometer resolution, into the structure and properties of those complex nanopatterns.  相似文献   

11.
12.
For the first time, hierarchically porous carbon materials with a sandwich‐like structure are synthesized through a facile and efficient tri‐template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich‐like structure has a relatively high specific surface (1235 m2 g?1), large pore volume (1.30 cm3 g?1), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g?1 at 0.2 A g?1 and satisfying rate performance (87.7 % retention from 1 to 20 A g?1). More importantly, the symmetric supercapacitor with two identical as‐prepared carbon samples shows a superior energy density of 18.47 Wh kg?1 at a power density of 179.9 W kg?1. The asymmetric supercapacitor based on as‐obtained carbon sample and its composite with manganese dioxide (MnO2) can reach up to an energy density of 25.93 Wh kg?1 at a power density of 199.9 W kg?1. Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage.  相似文献   

13.
In order to achieve pesudocapacitive performance of single‐wall carbon nanotube (SWCNT) electrodes, a high‐efficient and reversible redox strategy utilizing a redox‐mediated electrolyte for SWCNT‐based supercapacitors is reported. In this novel redox‐mediated electrolyte, the single‐electrode specific capacitance of the supercapacitor is heightened four times, reaching C=162.66 F g?1 at 1 A g?1. The quick charge‐discharge ability of the supercapacitor is also enhanced, and the relaxation time is as low as 0.58 s. Furthermore, the supercapacitor shows an excellent cycling performance of 96.51 % retention after 4000 cycles. The remarkable results presented here illustrate that the redox strategy is a facile and straightforward approach to improve the performances of SWCNT electrodes.  相似文献   

14.
15.
The synthesis of the high‐silica zeolite SSZ‐61 using a particularly bulky polycyclic structure‐directing agent and the subsequent elucidation of its unusual framework structure with extra‐large dumbbell‐shaped pore openings are described. By using information derived from a variety of X‐ray powder diffraction and electron microscopy techniques, the complex framework structure, with 20 Si atoms in the asymmetric unit, could be determined and the full structure refined. The Si atoms at the waist of the dumbbell are only three‐connected and are bonded to terminal O atoms pointing into the channel. Unlike the six previously reported extra‐large‐pore zeolites, SSZ‐61 contains no heteroatoms in the framework and can be calcined easily. This, coupled with the possibility of inserting a catalytically active center in the channel between the terminal O atoms in place of H+, afford SSZ‐61 intriguing potential for catalytic applications.  相似文献   

16.
Ultrathin CeVO4 nanobelts were successfully synthesized by a hydrothermal method. The thickness of a single nanobelt is about 2.4 nm, which can effectively shorten the ion diffusion and fasten the charge pathway. More importantly, ultrathin CeVO4 nanobelts and graphene are easily assembled as a flexible all‐solid‐state asymmetric device, which shows a highly flexible property and achieves a maximum energy density of 0.78 mW h cm?3 and a high life cycle of >6000 cycles.  相似文献   

17.
18.
To investigate the acidity of aspartic acid, the N, N′‐diasparitic acid‐3, 4, 9, 10‐perylene tetracarboxylic diimide (NAAPD) was synthesized and characterized. Previous studies have examined the self‐assembly behaviours of NAAPD mainly using atomic force microscopy at various pH levels. The present study sought to examine the characteristics and dynamics of NAAPD assembly using scanning probe microscopy. Our experimental results suggest that the assembly of NAAPD nanostructures may be regulated by pH. This phenomenon may be attributed to the deprotonation and properties of the carboxyl groups within aspartic acid, which is consistent with the interactions revealed from studies using scanning tunnelling microscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
20.
A 4‐ethynylpyridyl derivative with sterically shielding phenyl groups in the 3‐ and 5‐positions has been synthesized and used to terminate a series of polyynes. This approach allows for the synthesis of stable polyynes up to an octayne, twice as long as previous accessible for “unstabilized” pyridyl‐endcapped polyynes. The potential of these polyynes as wire‐like linkers to metal centers is demonstrated by axial coordination of pyridyl groups to zinc‐ and ruthenium‐metalloporphyrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号