首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preparation and Crystal Structure of Lithium Nitride Hydride, Li4NH, Li4ND Single phase Li4NH was prepared by the reaction of Li3N and LiH at 490°C. Its structure has been solved from x-ray and time-of-flight neutron powder diffraction data. Li4NH crystallizes in an ordered variant of the Li2O structure. N and H occupy the sites of two interpenetrating “extended” diamond lattices. Li occupies all N2H2 tetrahedral voids and is found to be shifted into a N2H tetrahedral face. As a result H is in compressed tetrahedral coordination by Li, while N is in bisdisphenoidal coordination by Li. Alternatively, the Li4NH structure may be regarded as a [Li4N]+threedimensional net, its voids being filled up with H?. Li4NH is a reactive solid, which decomposes to imide when in contact with N2 or H2 at some 400°C.  相似文献   

2.
Molten LiCl and related eutectic electrolytes are known to permit direct electrochemical reduction of N2 to N3? with high efficiency. It had been proposed that this could be coupled with H2 oxidation in an electrolytic cell to produce NH3 at ambient pressure. Here, this proposal is tested in a LiCl–KCl–Li3N cell and is found not to be the case, as the previous assumption of the direct electrochemical oxidation of N3? to NH3 is grossly over‐simplified. We find that Li3N added to the molten electrolyte promotes the spontaneous and simultaneous chemical disproportionation of H2 (H oxidation state 0) into H? (H oxidation state ?1) and H+ in the form of NH2?/NH2?/NH3 (H oxidation state +1) in the absence of applied current, resulting in non‐Faradaic release of NH3. It is further observed that NH2? and NH2? possess their own redox chemistry. However, these spontaneous reactions allow us to propose an alternative, truly catalytic cycle. By adding LiH, rather than Li3N, N2 can be reduced to N3? while stoichiometric amounts of H? are oxidised to H2. The H2 can then react spontaneously with N3? to form NH3, regenerating H? and closing the catalytic cycle. Initial tests show a peak NH3 synthesis rate of 2.4×10?8 mol cm?2 s?1 at a maximum current efficiency of 4.2 %. Isotopic labelling with 15N2 confirms the resulting NH3 is from catalytic N2 reduction.  相似文献   

3.
In the title compound, [Li(C5H3N4O2)(H2O)2]n, the coordinate geometry about the Li+ ion is distorted tetrahedral and the Li+ ion is bonded to N and O atoms of adjacent ligand mol­ecules forming an infinite polymeric chain with Li—O and Li—N bond lengths of 1.901 (5) and 2.043 (6) Å, respectively. Tetrahedral coordination at the Li+ ion is completed by two cis water mol­ecules [Li—O 1.985 (6) and 1.946 (6) Å]. The crystal structure is stabilized both by the polymeric structure and by a hydrogen‐bond network involving N—H?O, O—H?O and O—H?N hydrogen bonds.  相似文献   

4.
Synthesis and Crystal Structure of the Lithium Strontium Hydride Nitride LiSr2H2N LiSr2H2N was synthesized by the reaction of LiH and Li3N with elemental strontium in sealed tantalum tubes at 650 °C within seven days. This second example of a quaternary hydride nitride crystallizes orthorhombically in space group Pnma (no. 62) with the lattice constants a = 747.14(5) pm, b = 370.28(3) pm and c = 1329.86(9) pm (Z = 4). Its crystal structure contains both kinds of anions H? and N3? in a sixfold distorted octahedral metal cation coordination each. The coordination polyhedra [(H1)Sr5Li]10+, trans‐[(H2)Sr4Li2]9+ and [NSr5Li]8+ are connected via edges and corners to form a three‐dimensional network. Two crystallographically different Sr2+ cations exhibit a sevenfold monocapped trigonal prismatic coordination by H? and N3? with [(Sr1)H5N2]9? and [(Sr2)H4N3]11? polyhedra, wheras Li+ shows a nearly planar fourfold coordinative environment ([LiH3N]5?). Cationic double chains of edge‐shared [NSr5Li]8+ octahedra dominate the structure according to . Running parallel to the [0 1 0] direction, they are bundled like a hexagonal rod‐packing which is interconnected by H? anions within the (0 0 1) plane first and finally even in the third dimension (i. e. along [0 0 1]). Therefore the structure of LiSr2H2N is compared to that one of the closely related quaternary hydride oxide LiLa2HO3.  相似文献   

5.
The activity of [Pd(C6H4CH2 NH2‐κ2‐C‐N)PPh3MOBPPY]OTf complex, A (MOBPPY = 4‐methoxybenzoylmethylenetriphenyl‐ phosphoraneylide), was investigated in the Heck–Mizoroki C? C cross‐coupling reaction under conventional heating and microwave irradiation conditions. The complex is an active and efficient catalyst for the Heck reaction of aryl halides. The yields were excellent using a catalytic amount of [Pd(C6H4CH2 NH2‐κ2‐C‐N)PPh3MOBPPY]OTf complex in N‐methyl‐2‐pyrrolidinone (NMP) at 130 °C and 600 W. In comparison to conventional heating conditions, the reactions under microwave irradiation gave higher yields in shorter reaction times. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
On Chalcogenolates. 123. Studies on N-Cyanomonothiocarbimic Acid. 3. O, S-Dimethyl Ester of N-Cyanomonothiocarbimic Acid. Thiolysis and Hydrolysis of this Ester (H3CO)(H3CS)C?N? CN has been prepared by reaction of K2[SOC?N? CN] · H2O with H3CI. The thiolysis of this ester gives (H3CO)(H3CS)C?N? CS? NH2. The acid hydrolysis forms (H3CO)(H3CS)C?N? CO? NH2 via [(H3CO)(H3CS)C?N? C?NH]Cl. All compounds have been characterized by diverse methods.  相似文献   

7.
Li‐O2 batteries are promising energy storage systems due to their ultra‐high theoretical capacity. However, most Li‐O2 batteries are based on the reduction/oxidation of Li2O2 and involve highly reactive superoxide and peroxide species that would cause serious degradation of cathodes, especially carbon‐based materials. It is important to explore lithium‐oxygen reactions and find new Li‐O2 chemistry which can restrict or even avoid the negative influence of superoxide/peroxide species. Here, inspired by enzyme‐catalyzed oxygen reduction/oxidation reactions, we introduce a copper(I) complex 3 N‐CuI (3 N=1,4,7‐trimethyl‐1,4,7‐triazacyclononane) to Li‐O2 batteries and successfully modulate the reaction pathway to a moderate one on reversible cleavage/formation of O?O bonds. This work demonstrates that the reaction pathways of Li‐O2 batteries could be modulated by introducing an appropriate soluble catalyst, which is another powerful choice to construct better Li‐O2 batteries.  相似文献   

8.
Organocalcium compounds have been reported as efficient catalysts for various alkene transformations. In contrast to transition metal catalysis, the alkenes are not activated by metal–alkene orbital interactions. Instead it is proposed that alkene activation proceeds through an electrostatic interaction with a Lewis acidic Ca2+. The role of the metal was evaluated by a study using the metal‐free catalysts: [Ph2N?][Me4N+] and [Ph3C?][Me4N+]. These “naked” amides and carbanions can act as catalysts in the conversion of activated double bonds (C?O and C?N) in the hydroamination of Ar? N?C?O and R? N?C?N? R (R=alkyl) by Ph2NH. For the intramolecular hydroamination of unactivated C?C bonds in H2C?CHCH2CPh2CH2NH2 the presence of a metal cation is crucial. A new type of hybrid catalyst consisting of a strong organic Schwesinger base and a simple metal salt can act as catalyst for the intramolecular alkene hydroamination. The influence of the cation in catalysis is further evaluated by a DFT study.  相似文献   

9.
The synthesis of a novel series of the intermediates N2(N3)‐[1‐alkyl(aryl/heteroaryl)‐3‐oxo‐4,4,4‐trifluoroalk‐1‐en‐1‐yl]‐2‐aminopyridines [F3CC(O)CH?CR1(2? NH?C5H3N)] and 2,3‐diaminopyridines [F3CC(O)CH?CR1(2‐NH2‐3‐NH? C5H3N)], where R1 = H, Me, C6H5, 4‐FC6H4, 4‐CIC6H4, 4‐BrC6H4, 4‐CH3C6H4, 4‐OCH3C6H4, 4,4′‐biphenyl, 1‐naphthyl, 2‐thienyl, 2‐furyl, is reported. The corresponding series of 2‐aryl(heteroaryl)‐4‐trifluoromethyl‐3H‐pyrido[2,3‐b][1,4]diazepin‐4‐ols obtained from intramolecular cyclization reaction of the respective trifluoroacetyl enamines or from the direct cyclocondensation reaction of 4‐methoxy‐1,1,1‐trifluoroalk‐3‐en‐2‐ones with 2,3‐diaminopyridine, under mild conditions, is also reported.  相似文献   

10.
Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing picture for the conversion of N2 into NH3. However, electrocatalytic NRR mainly relies on metal‐based catalysts, and it remains a grand challenge in enabling effective N2 activation on metal‐free catalysts. Here we report a defect engineering strategy to realize effective NRR performance (NH3 yield: 8.09 μg h?1 mg?1cat., Faradaic efficiency: 11.59 %) on metal‐free polymeric carbon nitride (PCN) catalyst. Illustrated by density functional theory calculations, dinitrogen molecule can be chemisorbed on as‐engineered nitrogen vacancies of PCN through constructing a dinuclear end‐on bound structure for spatial electron transfer. Furthermore, the N?N bond length of adsorbed N2 increases dramatically, which corresponds to “strong activation” system to reduce N2 into NH3. This work also highlights the significance of defect engineering for improving electrocatalysts with weak N2 adsorption and activation ability.  相似文献   

11.
Tremendous energy consumption is required for traditional artificial N2 fixation, leading to additional environmental pollution. Recently, new Li‐N2 batteries have inextricably integrated energy storage with N2 fixation. In this work, graphene is introduced into Li‐N2 batteries and enhances the cycling stability. However, the instability and hygroscopicity of the discharge product Li3N lead to a rechargeable but irreversible system. Moreover, strong nonpolar N≡N covalent triple bonds with high ionization energies also cause low efficiency and irreversibility of Li‐N2 batteries. In contrast, the modification with in situ generated Li3N and LiOH restrained the loss and volume change of Li metal anodes during stripping and plating, thereby promoting the rechargeability of the Li‐N2 batteries. The mechanistic study here will assist in the design of more stable Li‐N2 batteries and create more versatile methods for N2 fixation.  相似文献   

12.
A series of metal compounds (M = Al, Ti, W, and Zn) containing pyrrole‐imine ligands have been prepared and structurally characterized. The reactions of AlMe3 with one and three equivs of pyrrole‐imine ligand [C4H3NH‐(2‐CH=N? CH2Ph)] ( 1 ) generated aluminum compounds Al[C4H3N‐(2‐CH=N? CH2Ph)]Me2 ( 2 ) and Al[C4H3N‐(2‐CH=NCH2Ph)]3 ( 3 ), respectively, in relatively high yield. Reacting two equivs of 1 with Ti(OiPr)4, W(NHtBu)2(=NtBu)2, or ZnMe2 afforded Ti[C4H3N‐(2‐CH=NCH2Ph)]2(OiPr)2 ( 4 ), W[C4H3N‐(2‐CH=NCH2Ph)]2(=NtBu)2 ( 5 ), and Zn[C4H3N‐(2‐CH=NCH2Ph)]2 ( 6 ), respectively. All the compounds have been characterized by 1H and 13C NMR spectroscopy. Compounds 3 – 6 have also been characterized by single‐crystal X‐ray structural analysis. The biting angles of pyrrole‐imine ligand with metals decrease and their related M? Npyrrole and M? Nimine bond lengths increase in the order of 6 , 3 , 4 , and 5 .  相似文献   

13.
A one‐pot template condensation of 2‐(2‐(dicyanomethylene)hydrazinyl)benzenesulfonic acid (H2L1, 1 ) or 2‐(2‐(dicyanomethylene)hydrazinyl)benzoic acid (H2L2, 2 ) with methanol (a), ethylenediamine (b), ethanol (c) or water (d) on copper(II), led to a variety of metal complexes, that is, mononuclear [Cu(H2O)2O1N2 L1a] ( 3 ) and [Cu(H2O)(κO1N3 L1b)] ( 4 ), tetranuclear [Cu4(1 κO1N2:2 κO1 L2a)3‐(1 κO1, κN2:2 κO2 L2a)] ( 5 ), [Cu2(H2O)(1 κO1, κN2:2 κO1 L2c)‐(1 κO1,1 κN2:2 κO1,2 κN1‐ L2c)]2 ( 6 ) and [Cu2(H2O)2O1N2‐ L1dd)‐(1 κO1N2:2 κO1 L1dd)(μ‐H2O)]2 ? 2 H2O ( 7? 2 H2O), as well as polymer‐ ic [Cu(H2O)(κO1,1 κN2:2 κN1 L1c)]n ( 8 ) and [Cu(NH2C2H5)(κO1,1 κN2:2 κN1L2a)]n ( 9 ). The ligands 2‐SO3H‐C6H4‐(NH)N?C{(CN)[C(NH2)‐(?NCH2CH2NH2)]} (H2L1b, 10 ), 2‐CO2H‐C6H4‐(NH)N?{C(CN)[C(OCH3)‐(?NH)]} (H2L2a, 11 ) and 2‐SO3H‐C6H4‐(NH)N?C{C(?O)‐(NH2)}2 (H2L1dd, 12 ) were easily liberated upon respective treatment of 4 , 5 and 7 with HCl, whereas the formation of cyclic zwitterionic amidine 2‐(SO3?)? C6H4? N?NC(? C?(NH+)CH2CH2NH)(?CNHCH2CH2NH) ( 13 ) was observed when 1 was treated with ethylenediamine. The hydrogen bond‐induced E/Z isomerization of the (HL1d)? ligand occurs upon conversion of [{Na(H2O)2(μ‐H2O)2}(HL1d)]n ( 14 ) to [Cu(H2O)6][HL1d]2 ? 2 H2O ( 15 ) and [{CuNa(H2O)‐(κN1,1 κO2:2 κO1 L1d)2}K0.5(μ‐O)2]n ? H2O ( 16 ). The synthesized complexes 3 – 9 are catalyst precursors for both the selective oxidation of primary and secondary alcohols (to the corresponding carbonyl compounds) and the following diastereoselective nitroaldol (Henry) reaction, with typical yields of 80–99 %.  相似文献   

14.
1,1,1‐Trimethylhydrazinium iodide ([(CH3)3N? NH2]I, 1 ) was reacted with a silver salt to form the corresponding nitrate ([(CH3)3N? NH2][NO3], 2 ), perchlorate ([(CH3)3N? NH2][ClO4], 3 ), azide ([(CH3)3N? NH2][N3], 4 ), 5‐amino‐1H‐tetrazolate ([(CH3)3N? NH2][H2N? CN4], 5 ), and sulfate ([(CH3)3N? NH2]2[SO4]?2H2O, 6 ?2H2O) salts. The metathesis reaction of compound 6 ?2H2O with barium salts led to the formation of the corresponding picrate ([(CH3)3N? NH2][(NO2)3Ph ‐ O], 7 ), dinitramide ([(CH3)3N? NH2][N(NO2)2], 8 ), 5‐nitrotetrazolate ([(CH3)3N? NH2][O2N? CN4], 9 ), and nitroformiate ([(CH3)3N? NH2][C(NO2)3], 10 ) salts. Compounds 1 – 10 were characterized by elemental analysis, mass spectrometry, infrared/Raman spectroscopy, and multinuclear NMR spectroscopy (1H, 13C, and 15N). Additionally, compounds 1 , 6 , and 7 were also characterized by low‐temperature X‐ray diffraction techniques (XRD). Ba(NH4)(NT)3 (NT=5‐nitrotetrazole anion) was accidentally obtained during the synthesis of the 5‐nitrotetrazole salt 9 and was also characterized by low‐temperature XRD. Furthermore, the structure of the [(CH3)3N? NH2]+ cation was optimized using the B3LYP method and used to calculate its vibrational frequencies, NBO charges, and electronic energy. Differential scanning calorimetry (DSC) was used to assess the thermal stabilities of salts 2 – 5 and 7 – 10 , and the sensitivities of the materials towards classical stimuli were estimated by submitting the compounds to standard (BAM) tests. Lastly, we computed the performance parameters (detonation pressures/velocities and specific impulses) and the decomposition gases of compounds 2 – 5 and 7 – 10 and those of their oxygen‐balanced mixtures with an oxidizer.  相似文献   

15.
Template combination of copper acetate (Cu(AcO)2?H2O) with sodium dicyanamide (NaN(C≡N)2, 2 equiv) or cyanoguanidine (N≡CNHC(=NH)NH2, 2 equiv) and an alcohol ROH (used also as solvent) leads to the neutral copper(II)–(2,4‐alkoxy‐1,3,5‐triazapentadienato) complexes [Cu{NH?C(OR)NC(OR)?NH}2] (R=Me ( 1 ), Et ( 2 ), nPr ( 3 ), iPr ( 4 ), CH2CH2OCH3 ( 5 )) or cationic copper(II)–(2‐alkoxy‐4‐amino‐1,3,5‐triazapentadiene) complexes [Cu{NH?C(OR)NHC(NH2)?NH}2](AcO)2 (R=Me ( 6 ), Et ( 7 ), nPr ( 8 ), nBu ( 9 ), CH2CH2OCH3 ( 10 )), respectively. Several intermediates of this reaction were isolated and a pathway was proposed. The deprotonation of 6 – 10 with NaOH allows their transformation to the corresponding neutral triazapentadienates [Cu{NH?C(OR)NC(NH2)?NH}2] 11 – 15 . Reaction of 11 , 12 or 15 with acetyl acetone (MeC(?O)CH2C(?O)Me) leads to liberation of the corresponding pyrimidines NC(Me)CHC(Me)NC NHC(?NH)OR, whereas the same treatment of the cationic complexes 6 , 7 or 10 allows the corresponding metal‐free triazapentadiene salts {NH2C(OR)?NC(NH2)?NH2}(OAc) to be isolated. The alkoxy‐1,3,5‐triazapentadiene/ato copper(II) complexes have been applied as efficient catalysts for the TEMPO radical‐mediated mild aerobic oxidation of alcohols to the corresponding aldehydes (molar yields of aldehydes of up to 100 % with >99 % selectivity) and for the solvent‐free microwave‐assisted synthesis of ketones from secondary alcohols with tert‐butylhydroperoxide as oxidant (yields of up to 97 %, turnover numbers of up to 485 and turnover frequencies of up to 1170 h?1).  相似文献   

16.
We present energy component analysis calculations on alkali atom (Li,Na) hydride (H2O,NH3,H2S) interactions and compare these with corresponding (Li+ …? NH3) cation …? hydride interactions. In contrast to cation hydride interactions, the neutral atom–hydride interactions are shown to involve considerable contributions from all energy components.  相似文献   

17.
Titanium‐based catalysts are needed to achieve electrocatalytic N2 reduction to NH3 with a large NH3 yield and a high Faradaic efficiency (FE). One of the cheapest and most abundant metals on earth, iron, is an effective dopant for greatly improving the nitrogen reduction reaction (NRR) performance of TiO2 nanoparticles in ambient N2‐to‐NH3 conversion. In 0.5 m LiClO4, Fe‐doped TiO2 catalyst attains a high FE of 25.6 % and a large NH3 yield of 25.47 μg h?1 mgcat?1 at ?0.40 V versus a reversible hydrogen electrode. This performance compares favorably to those of all previously reported titanium‐ and iron‐based NRR electrocatalysts in aqueous media. The catalytic mechanism is further probed with theoretical calculations.  相似文献   

18.
Hexakis (2‐halo‐anilino) cyclotriphosphazenes (2‐X‐C6H4NH)6P3N3 {X = F ( 1d ), Cl ( 1e ), Br ( 1f )} were prepared by refluxing mixtures of hexachloro cyclotriphosphazene, 2‐haloaniline and triethylamine in toluene and characterized by single crystal X‐ray diffraction. 1d , 1e and 1f were reacted with nBuLi in thf. Reactions were monitored with 31P NMR. Addition of three equivalents of nBuLi yields lithium complexes of trianionic phosphazenates [{(thf)2Li}3{(2‐X‐C6H4N)3(2‐X‐C6H4NH)3P3N3}] {X= F ( 2d ), Cl ( 2e ) and Br ( 2f )}. 2d , 2e and 2f were structurally characterized by X‐ray diffraction, which reveals monomeric cis‐metalated phosphazenates featuring central P3N3 ring systems of chair conformation. Lithium ions reside in three N(eq)‐P‐N(endo) chelation sites at one face of the P3N3 ring system. Li…X distances are rather long (> 3Å) indicating no Li‐X interactions.  相似文献   

19.
A number of (hydroxyalkylamine)‐N‐(aminoalkyl)azanonaborane(11) derivatives have been synthesized to provide azanonaboranes with different hydrophilic functional groups for use in the treatment of cancer by boron neutron capture therapy (BNCT). The exo‐diamine group of (aminoalkylamine)‐N‐(aminoalkyl)azanonaborane(11) {H2N(CH2)mH2NB8H11NH(CH2)mNH2, where m = 4–6} can be substituted by amino alcohol ligands {HO(CH2)nNH2, where n = 3 and 4} to give azanonaboranes containing free amino and hydroxy groups: (3‐hydroxypropylamine)‐N‐(aminobutyl)azanonaborane(11) {HO(CH2)3H2NB8H11NH(CH2)4NH2}, 1 ; (4‐hydroxybutylamine)‐N‐ (aminobutyl)azanonaborane(11) {HO(CH2)4H2NB8H11NH(CH2)4NH2}, 2 ; (3‐hydroxypropylamine)‐N‐ (aminopentyl)azanonaborane(11) {HO(CH2)3H2NB8H11NH(CH2)5NH2}, 3 ; (4‐hydroxypropylamine)‐N‐(aminopentyl)azanonaborane(11) {HO(CH2)4H2NB8H11NH(CH2)5NH2}, 4 ; (3‐hydroxypropylamine)‐N‐(aminohexyl)azanonaborane(11) {HO(CH2)3H2NB8H11NH(CH2)6NH2}, 5 . The in vitro toxicity test using Chinese hamster‐V79 cells showed that compounds 1 – 3 were less toxic (LD50 value of ~2.3, 1.7 and 1.4 mM , respectively) than spermine and spermidine (LD50 value of ~0.88 and 0.66 mM , respectively). In vivo distribution experiments of these compounds in Lewis lung carcinoma and B16 melanoma tumor‐bearing mice showed that boron can be found in tumor tissue. The compounds prepared can be considered as a new class of boron containing polyamine compounds that may be useful for boron neutron capture therapy of tumors. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Hydrocarbon‐soluble model systems for the calcium–amidoborane–ammine complex Ca(NH2BH3)2 ? (NH3)2 were prepared and structurally characterized. The following complexes were obtained by the reaction of RNH2BH3 (R=H, Me, iPr, DIPP; DIPP=2,6‐diisopropylphenyl) with Ca(DIPP‐nacnac)(NH2) ? (NH3)2 (DIPP‐nacnac=DIPP? NC(Me)CHC(Me)N? DIPP): Ca(DIPP‐nacnac)(NH2BH3) ? (NH3)2, Ca(DIPP‐nacnac)(NH2BH3) ? (NH3)3, Ca(DIPP‐nacnac)[NH(Me)BH3] ? (NH3)2, Ca(DIPP‐nacnac)[NH(iPr)BH3] ? (NH3)2, and Ca(DIPP‐nacnac)[NH(DIPP)BH3] ? NH3. The crystal structure of Ca(DIPP‐nacnac)(NH2BH3) ? (NH3)3 showed a NH2BH3? unit that was fully embedded in a network of BH???HN interactions (range: 1.97(4)–2.39(4) Å) that were mainly found between NH3 ligands and BH3 groups. In addition, there were N? H???C interactions between NH3 ligands and the central carbon atom in the ligand. Solutions of these calcium–amidoborane–ammine complexes in benzene were heated stepwise to 60 °C and thermally decomposed. The following main conclusions can be drawn: 1) Competing protonation of the DIPP‐nacnac anion by NH3 was observed; 2) The NH3 ligands were bound loosely to the Ca2+ ions and were partially eliminated upon heating. Crystal structures of [Ca(DIPP‐nacnac)(NH2BH3) ? (NH3)], Ca(DIPP‐nacnac)(NH2BH3) ? (NH3) ? (THF), and [Ca(DIPP‐nacnac){NH(iPr)BH3}]2 were obtained. 3) Independent of the nature of the substituent R in NH(R)BH3, the formation of H2 was observed at around 50 °C. 4) In all cases, the complex [Ca(DIPP‐nacnac)(NH2)]2 was formed as a major product of thermal decomposition, and its dimeric nature was confirmed by single‐crystal analysis. We proposed that thermal decomposition of calcium–amidoborane–ammine complexes goes through an intermediate calcium–hydride–ammine complex which eliminates hydrogen and [Ca(DIPP‐nacnac)(NH2)]2. It is likely that the formation of metal amides is also an important reaction pathway for the decomposition of metal–amidoborane–ammine complexes in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号