首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The oxygen reduction reaction (ORR) is of high industrial importance. There is a large body of literature showing that metal‐based catalytic nanoparticles (e.g. Co, Mn, Fe or hybrid Mn/Co‐based nanoparticles) supported on graphene act as efficient catalysts for the ORR. A significant research effort is also directed to the so‐called “metal‐free” oxygen reduction reaction on heteroatom‐doped graphene surfaces. While such studies of the ORR on nonmetallic heteroatom‐doped graphene are advertised as “metal‐free” there is typically no sufficient effort to characterize the doped materials to verify that they are indeed free of any trace metal. Here we argue that the claimed “metal‐free” electrocatalysis of the oxygen reduction reaction on heteroatom‐doped graphene is caused by metallic impurities present within the graphene materials.  相似文献   

3.
Nitrogen‐doped carbon nanosheets (NDCN) with size‐defined mesopores are reported as highly efficient metal‐free catalyst for the oxygen reduction reaction (ORR). A uniform and tunable mesoporous structure of NDCN is prepared using a templating approach. Such controlled mesoporous structure in the NDCN exerts an essential influence on the electrocatalytic performance in both alkaline and acidic media for the ORR. The NDCN catalyst with a pore diameter of 22 nm exhibits a more positive ORR onset potential than that of Pt/C (?0.01 V vs. ?0.02 V) and a high diffusion‐limited current approaching that of Pt/C (5.45 vs. 5.78 mA cm?2) in alkaline medium. Moreover, the catalyst shows pronounced electrocatalytic activity and long‐term stability towards the ORR under acidic conditions. The unique planar mesoporous shells of the NDCN provide exposed highly electroactive and stable catalytic sites, which boost the electrocatalytic activity of metal‐free NDCN catalyst.  相似文献   

4.
5.
Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF‐derived carbon aerogels for various applications.  相似文献   

6.
7.
8.
9.
The oxygen reduction reaction (ORR) is of significant importance in the development of fuel cells. Now, cobalt–nitrogen‐doped chiral carbonaceous nanotubes (l/d ‐CCNTs‐Co) are presented as efficient electrocatalysts for ORR. The chiral template, N‐stearyl‐l/d ‐glutamic acid, induces the self‐assembly of well‐arranged polypyrrole and the formation of ordered graphene carbon with helical structures at the molecular level after the pyrolysis process. Co was subsequently introduced through the post‐synthesis method. The obtained l/d ‐CCNTs‐Co exhibits superior ORR performance, including long‐term stability and better methanol tolerance compared to achiral Co‐doped carbon materials and commercial Pt/C. DFT calculations demonstrate that the charges on the twisted surface of l/d ‐CCNTs are widely separated; as a result the Co atoms are more exposed on the chiral CCNTs. This work gives us a new understanding of the effects of helical structures in electrocatalysis.  相似文献   

10.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   

11.
陈君  隆继兰 《分子催化》2017,31(5):463-471
采用水热法合成了一系列的Co-Zn-MOF材料,随后将其在高温下热解,采用自模板的方式得到双中心MOFs衍生的Co-ZnO@CN纳米催化剂.通过调节前驱体的比例和热解温度,优化了制备Co-ZnO@CN纳米催化剂的条件.利用粉末X射线衍射(XRD)和X射线光电子能谱(XPS)对Co-ZnO@CN纳米催化剂的结构及表面化学性质进行表征,采用扫描电子显微镜(SEM)和能量色散谱仪(EDS)考察了Co-ZnO@CN纳米催化剂的形貌和表面化学元素的种类和组成.通过氧还原反应(ORR)测试了催化剂的催化性能.实验结果表明当热解温度为800℃,Co与Zn摩尔质量之比为1∶2时,所得到的Co-ZnO(1∶2)@CN-800纳米催化剂的催化活性最高,其起始电势和半波电势分别为0.90和0.78 V,此外,通过计算表明该纳米催化剂在氧还原反应中氧分子还原过程遵循4e-反应路径.  相似文献   

12.
The future of affordable fuel cells strongly relies on the design of earth‐abundant (non‐platinum) catalysts for the electrochemical oxygen reduction reaction (ORR). However, the bottleneck in the overall process occurs therein. We have examined herein trivalent Mn, Fe, Co, Ni, and Cu complexes of β‐pyrrole‐brominated corrole as ORR catalysts. The adsorption of these complexes on a high‐surface‐area carbon powder (BP2000) created a unique composite material, used for electrochemical measurements in acidic aqueous solutions. These experiments disclosed a clear dependence of the catalytic activity on the metal center of the complexes, in the order of Co>Fe>Ni>Mn>Cu. The best catalytic performance was obtained for the CoIII corrole, whose onset potential was as positive as 0.81 V versus the reversible hydrogen electrode (RHE). Insight into the properties of these systems was gained by spectroscopic and computational characterization of the reduced and oxidized forms of the metallocorroles.  相似文献   

13.
14.
Fe‐Co‐N‐C electrocatalysts have proven superior to their counterparts (e.g. Fe‐N‐C or Co‐N‐C) for the oxygen reduction reaction (ORR). Herein, we report on a unique strategy to prepare Fe‐Co‐N‐C?x (x refers to the pyrolysis temperature) electrocatalysts which involves anion‐exchange of [Fe(CN)6]3? into a cationic CoII‐based metal‐organic framework precursor prior to heat treatment. Fe‐Co‐N‐C‐900 exhibits an optimal ORR catalytic performance in an alkaline electrolyte with an onset potential (Eonset: 0.97 V) and half‐wave potential (E1/2: 0.86 V) comparable to that of commercial Pt/C (Eonset=1.02 V; E1/2=0.88 V), which outperforms the corresponding Co‐N‐C‐900 sample (Eonset=0.92 V; E1/2=0.84 V) derived from the same MOF precursor without anion‐exchange modification. This is the first example of Fe‐Co‐N‐C electrocatalysts fabricated from a cationic CoII‐based MOF precursor that dopes the Fe element via anion‐exchange, and our current work provides a new entrance towards MOF‐derived transition‐metal (e.g. Fe or Co) and nitrogen‐codoped carbon electrocatalysts with excellent ORR activity.  相似文献   

15.
The oxygen reduction reaction (ORR) is a key step in H2–O2 fuel cells, which, however, suffers from slow kinetics even for state‐of‐the‐art catalysts. In this work, by making use of photocatalysis, the ORR was significantly accelerated with a polymer semiconductor (polyterthiophene). The onset potential underwent a positive shift from 0.66 to 1.34 V, and the current was enhanced by a factor of 44 at 0.6 V. The improvement was further confirmed in a proof‐of‐concept light‐driven H2–O2 fuel cell, in which the open circuit voltage (Voc) increased from 0.64 to 1.18 V, and the short circuit current (Jsc) was doubled. This novel tandem structure combining a polymer solar cell and a fuel cell enables the simultaneous utilization of photo‐ and electrochemical energy, showing promising potential for applications in energy conversion and storage.  相似文献   

16.
以百里香酚蓝为前驱物,采用硬模版法一步合成硫掺杂的有序介孔碳材料(S-OMC)。在900℃下热解负载百里香酚蓝的介孔二氧化硅SBA-15,获得了具有石墨孔壁结构的有序介孔碳材料(S-OMC-900)。硫元素均匀有效地分布在碳材料介孔孔壁上,并对催化氧还原反应(ORR)起到了关键性作用。S掺杂的有序介孔碳材料的比表面积为1 230 m~2·g~(-1),孔径4.6 nm,有序的孔道结构保证了氧还原反应的物料运输,增大了催化活性。测试结果表明,所制备的S-OMC-900具有良好的催化活性和稳定性。与商业Pt/C比较,S-OMC-900具有更好的甲醇耐受性。  相似文献   

17.
Preparing nonprecious metal catalysts with high activity in the oxygen reduction reaction (ORR) can promote the development of energy conversion devices. Support‐free porous Mn2O3 was synthesized by a facile aerosol‐spray‐assisted approach (ASAA) and subsequent thermal treatment, and exhibited ORR activity that is comparable to commercial Pt/C The catalyst also exhibits notably higher activity than other Mn‐based oxides, such as Mn3O4 and MnO2. The rotating ring disk electrode (RRDE) study indicates a typical 4‐electron ORR pathway on Mn2O3. Furthermore, the porous Mn2O3 demonstrates considerable stability and a good methanol tolerance in alkaline media. In light of the low cost and high earth abundance of Mn, the highly active Mn2O3 is a promising candidate to be used as a cathode material in metal–air batteries and alkaline fuel cells.  相似文献   

18.
Highly efficient electrocatalysts derived from metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) have been developed. However, the subsequent pyrolysis is often needed owing to their poor intrinsic electrical conductivity, leading to undesirable structure changes and destruction of the original fine structure. Now, hybrid electrocatalysts were formed by self‐assembling pristine covalent organic polymer (COP) with reduced graphene oxide (rGO). The electrical conductivity of the hybridized COP/rGO materials is increased by more than seven orders of magnitude (from 3.06×10?9 to 2.56×10?1 S m?1) compared with pure COPs. The ORR activities of the hybrid are enhanced significantly by the synergetic effect between highly active COP and highly conductive rGO. This COP/rGO hybrid catalyst exhibited a remarkable positive half‐wave (150 mV).  相似文献   

19.
In this study, N,P co‐doped graphene (NPG) was prepared by a one‐step pyrolysis using a mixture of graphene oxide and hexachlorocyclotriphosphazene (HCCP), in which HCCP was used as both the N and P source. Furthermore, it is shown that NPG electrodes, as efficient metal‐free electrocatalysts, have a high onset potential, high current density, and long‐term stability for the oxygen reduction reaction.  相似文献   

20.
炭载体的稳定性对于燃料电池电催化剂是至关重要的. 本文中采用酚醛树脂作为前驱体,二氧化硅为模板剂,制备了多介孔且石墨化程度高的炭载体(HGMC). 相比于商品Vulcan XC-72,HGMC具有中等的比表面积和高的石墨化程度,因此在电位循环扫描过程中具有较高的化学稳定性,然而HGMC碳层堆叠的结构不利于传质. 为克服这一劣势,多壁碳纳米管(MWCNTs)作为隔离物加入至HGMC中以构建具有三维多尺度结构的载体(MSGC). 与HGMC为载体担载Pt以及商品催化剂Pt/C-JM相比,由于炭载体的具有高稳定性以及三维多尺度结构,MSGC担载Pt后不仅使电催化剂的电化学稳定性提高,且氧还原反应过程中传质得到显著改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号