首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of fluorescence polarization (FP) has increased significantly in the development of sensitive and robust assays for high throughput screening of chemical compound libraries during the past few years. In this study, we show that FP is a useful assay miniaturization technology for reagent reduction during high throughput screening. We developed and optimized several FP assays for binding to estrogen receptor alpha and two protein kinases with an assay volume of 100 microl. Without any re-optimization, a consistent signal window was maintained in 384- or 1536-well format when the assay volume varied from 2.5-100 microl at constant concentrations of all assay components. In contrast, the signal window decreased with decreasing assay volume at constant reagent concentration in the protein kinase C scintillation proximity assay (SPA) and prompt fluorescence assay. In addition, the effect of evaporation on the signal window was minimal for the FP assays. Our study suggests that FP is superior to SPA and prompt fluorescence in terms of reagent reduction in the miniaturized assay format.  相似文献   

2.
We describe the development and implementation of competitive fluorescence polarization (FP) based assays for determining activity of phosphoinositide 3-kinase (PI 3-K) and the type-II SH2-domain-containing inositol 5-phosphatase (SHIP2). These assays are based on the interaction of specific phosphoinositide binding proteins with fluorophore-labeled phosphoinositide and inositol phosphate tracers. Enzyme reaction products are detected by their ability to compete with the fluorescent tracers for protein binding, leading to an increase in the amount of free tracer and a decrease in polarization (mP) values. A variety of fluorophore-labeled tracers were evaluated, and assay sensitivity and specificity for products of PI 3-K and SHIP2 activity was determined. Assay performance was evaluated using recombinant PI 3-Kalpha and SHIP2 with diC(8)-PI(4,5)P(2) and diC(8)-PI(3,4,5)P(3) as respective substrates. IC(50) values for previously characterized PI 3-K inhibitors were within expected ranges. These assays are homogeneous, sensitive, and rapid, and suitable for HTS applications, and will facilitate screening for novel inhibitors of phosphoinositide kinases and phosphatases in drug development.  相似文献   

3.
Fluorescence polarization (FP) assays incorporated with fluorophore-labeled aptamers have attracted great interest in recent years. However, detecting small molecules through the use of FP assays still remains a challenge because small-molecule binding only results in negligible changes in the molecular weight of the fluorophore-labeled aptamer. To address this issue, we herein report a fluorescence polarization (FP) aptamer assay that incorporates a novel signal amplification strategy for highly sensitive detection of small molecules. In the absence of adenosine, our model target, free FAM-labeled aptamer can be digested by nuclease, resulting in the release of FAM-labeled nucleotide segments from the dT-biotin/streptavidin complex with weak background signal. However, in the presence of target, the FAM-labeled aptamer–target complex protects the FAM-labeled aptamer from nuclease cleavage, allowing streptavidin to act as a molar mass amplifier. The resulting increase in molecular mass and FP intensity of the aptamer–target complex provides improved sensitivity for concentration measurement. The probe could detect adenosine from 0.5 μM to 1000 μM, with a detection limit of 500 nM, showing that the sensitivity of the probe is superior to aptamer-based FP approaches previously reported for adenosine. Importantly, FP could resist environmental interferences, making it useful for complex biological samples without any tedious sample pretreatments. Our results demonstrate that this dual-amplified, aptamer-based strategy can be used to design fluorescence polarization probes for rapid, sensitive, and selective measurement of small molecules in complicated biological environment.  相似文献   

4.
Fluorescence polarization immunoassay (FPIA) is a homogeneous (without separation) competitive immunoassay method based on the increase in fluorescence polarization (FP) of fluorescent-labeled small antigens when bound by specific antibody. The minimum detectable quantity of FPIAs with fluorescein label (about 0.1 ng analyte) is comparable with chromatography and ELISA methods, although this may be limited by sample matrix interference. Because of its simplicity and speed, FPIA is readily automated and therefore suitable for high-throughput screening (HTS) in a variety of application areas. Systems that involve binding of ligands to receptor proteins are also susceptible to analysis by analogous FP methods employing fluorescent-labeled ligand and HTS applications have been developed, notably for use in candidate drug screening.  相似文献   

5.
Traditional methods for protein kinase (PK) assay are mainly based on use of 32P-labeled adenosine triphosphate (ATP); applications of such methods are, however, hampered by radioactive waste and short half-life of 32P-labeled ATP. Therefore non-radioactive methods, such as fluorescence detection techniques are good alternative. In this review, we describe the principles of four fluorescence techniques (fluorescence intensity endpoint measurement, fluorescence resonance energy transfer (FRET), fluorescence polarization (FP), and fluorescence lifetime imaging) and provide an overview of applications of these fluorescence detection techniques in protein kinase assay, underlining their relative advantages and limitations. Research trends in this field are also highlighted. Figure Schematic representation of kinase assay based on direct fluorescence polarization measurements. The fluorescent peptide, on phosphorylation by kinase, binds to a phosphospecific antibody, which leads to a high FP value  相似文献   

6.
We present a novel homogeneous (“mix‐incubate‐read”) droplet microfluidic assay for specific protein detection in picoliter volumes by fluorescence polarization (FP), for the first time demonstrating the use of FP in a droplet microfluidic assay. Using an FP‐based assay we detect streptavidin concentrations as low as 500 nM and demonstrate that an FP assay allows us to distinguish droplets containing 5 μM rabbit IgG from droplets without IgG with an accuracy of 95%, levels relevant for hybridoma screening. This adds to the repertoire of droplet assay techniques a direct protein detection method which can be performed entirely inside droplets without the need for labeling of the analyte molecules.  相似文献   

7.
In this review, we summarize the number of scientific publications in the field of FP/FA sensor in recent five years, and introduce the recent progress of FP/FA sensor based on nanomaterial. The various analytical applications of FP/FA sensor based on nanomaterial are discussed. We also provide perspectives on the current challenges and future prospects in the promising field.  相似文献   

8.
《中国化学快报》2019,30(9):1575-1580
As a promising signaling transduction approach, fluorescence polarization (FP)/fluorescence anisotropy (FA), provides a powerful quantitative tool for the rotational motion of fluorescently labeled molecules in chemical or biological homogeneous systems. Unlike fluorescence intensity, FP/FA is almost independent the concentration or quantum of fluorophores, but they are highly dependent on the size or molecular weight of the molecules or materials attached to fluorophores. Recently, significant progress in FP/FA was made, due to the introduction of some nanomaterials as FP/FA enhancers. The detection sensitivity is thus greatly improved by using nanomaterials as FP/FA enhancers, and nanomaterial-based FP/FA is currently used successfully in immunoassay, and analysis of protein, nucleic acid, small molecule and metal ion. Nanomaterial-based FP/FA provides a new kind of strategy to design fluorescent sensors and establishes innovative analytical methods. In this review, we summarize the scientific publications in the field of FP/FA sensor in recent five years, and first introduce the recent progress of FP/FA sensor based on nanomaterial. Subsequently, the various analytical applications of FP/FA based on nanomaterial are discussed. Finally, we provide perspectives on the current challenges and future prospects in this promising field.  相似文献   

9.
PDZ (PSD-95/Discs-large/ZO-1 homology) domains represent putative targets in several diseases including cancer, stroke, addiction and neuropathic pain. Here we describe the application of a simple and fast screening assay based on fluorescence polarization (FP) to identify inhibitors of the PDZ domain in PICK1 (protein interacting with C kinase 1). We screened 43,380 compounds for their ability to inhibit binding of an Oregon Green labeled C-terminal dopamine transporter peptide (OrG-DAT C13) to purified PICK1 in solution. The assay was highly reliable with excellent screening assay parameters (Z'≈0.7 and Z≈0.6). Out of ~200 compounds that reduced FP to less than 80% of the control wells, six compounds were further characterized. The apparent affinities of the compounds were determined in FP competition binding experiments and ranged from ~5.0 μM to ~193 μM. Binding to the PICK1 PDZ domain was confirmed for five of the compounds (CSC-03, CSC-04, CSC-43, FSC-231 and FSC-240) in a non-fluorescence based assay by their ability to inhibit pull-down of PICK1 by a C-terminal DAT GST fusion protein. CSC-03 displayed the highest apparent affinity (5.0 μM) in the FP assay, and was according to fluorescence resonance energy transfer (FRET) experiments capable of inhibiting the interaction between the C-terminus of the GluR2 subunit of the AMPA-type glutamate receptor and PICK1 in live cells. Additional experiments suggested that CSC-03 most likely is an irreversible inhibitor but with specificity for PICK1 since it did not bind three different PDZ domains of PSD-95. Summarized, our data suggest that FP based screening assays might be a widely applicable tool in the search for small molecule inhibitors of PDZ domain interactions.  相似文献   

10.
Ohno K  Suzuki S  Fukushima T  Maeda M  Santa T  Imai K 《The Analyst》2003,128(8):1091-1096
In this study, we examined the affinities of many (21) compounds such as hormones, pharmaceuticals, industrial chemicals, and phytoestrogens to the estrogen receptor (ER) by ER binding assay using fluorescence polarization (FP). This method is based on the competitive binding assay using fluorescein-labeled estradiol (F-E2), in which the polarization values decreased with the addition of the compounds (competitors). The obtained sigmoidal inhibition curves were transformed into the pseudo-Hill plots, and the concentrations at 50% inhibition (IC50) and Hill coefficients were obtained from the regression equations. We examined the relationship between the chemical structures and estrogenic activities, and finally classified the tested compounds into three categories, agonists, partial agonists and antagonists based on their Hill coefficients.  相似文献   

11.
Introduction Singlenucleotidepolymorphisms(SNPs)arethe mostabundantDNAmarkersinthehumangenomeoc curringatafrequencyofoneinevery500—1000nu cleotides[1].Avarietyofmethodshavebeenusedfor theanalysisofsinglenucleotidepolymorphisms,inclu dingrestrictionfragme…  相似文献   

12.
Current methods for single nucleotide polymorphism (SNP) analysis are time-consuming and complicated. We aimed at development of one-step real-time fluorescence mutant-allele-specific amplification (MASA) method for rapid SNP analysis. The method is a marriage of two technologies: MASA primers for target DNA and a double-stranded DNA-selective fluorescent dye, SYBR Green I. Genotypes are separated according to the different threshold cycles of the wild-type and mutant primers. K-rar oncogene was used as a target to validate the feasibility of the method. The experimental results showed that the different genotypes can be clearly discriminated by the assay. The real-time fluorescence MASA method will have an enormous potential for fast and reliable SNP analysis due to its simplicity and low cost.  相似文献   

13.
Recognition of intracellular lipopolysaccharide (LPS) by Caspase-4 (Casp-4) is critical for host defense against Gram-negative pathogens. LPS binds to the N-terminal caspase activation and recruitment domain (CARD) of procaspase-4, leading to auto-proteolytic activation followed by pro-inflammatory cytokine release and pyroptotic cell death. Aberrant hyper-activation of Casp-4 leads to amplification of the inflammatory response linked to sepsis. While the active site of a caspase has been targeted with peptide inhibitors, inhibition of LPS–Casp-4 interaction is an emerging strategy for the development of selective inhibitors with a new mode of action for treating infectious diseases and sepsis induced by LPS. In this study, a high-throughput screening (HTS) system based on fluorescence polarization (FP) was devised to identify inhibitors of the LPS and Casp-4 interaction. Using HTS and IC50 determination and subsequently showing inhibited Casp-4 activity, we demonstrated that the LPS–Casp-4 interaction is a druggable target for Casp-4 inhibition and possibly a non-canonical inflammatory pathway.  相似文献   

14.
Single nucleotide polymorphisms (SNPs) are the most abundant variations in the human genome and have become the primary markers for genetic studies for mapping and identifying susceptible genes for complex diseases. Methods that genotype SNPs quickly and economically are of high values for these studies because they require a large amount of genotyping. Fluorescence polarization (FP) is a robust technique that can detect products without separation and purification and it has been applied for SNP genotyping. In this article the applications of FP in SNP genotyping are reviewed and one of the methods, the FP-TDI assay, is discussed in details. It is hoped that readers could get useful information for the applications of FP in SNP genotyping and some insights of the FP-TDI assay.  相似文献   

15.
A new fluorescence polarization (FP) amplification strategy based on the use of multiwalled carbon nanotubes (MWCNTs) as the FP enhancer was developed for the simple, sensitive, and universal monitoring of protease activity in homogeneous solution. A fluorophore‐labeled peptide that includes a protease‐cleavable element and ten histidine residues for binding MWCNTs is adsorbed on MWCNTs through strong π–π stacking and electrostatic interactions. When the fluorophore‐labeled peptide/MWCNT complexes are exposed to a protease target, specific peptide cleavage by the protease target occurs, thus releasing fragments carrying the fluorophore from the surface of MWCNTs, which in turn results in a significant decrease in the FP value. The detection limits of this assay for two proteases, thrombin and chymotrypsin (CTP), were estimated to be 0.5 pM and 0.3 pM , respectively. In addition, it is also demonstrated that this MWCNT‐enhanced FP assay is suitable for protease inhibitor screening.  相似文献   

16.
Fluorescence polarization (FP) has become widely employed for high throughput screening used in pharmaceutical drug discovery. Assays of important signal transduction targets are now adapted to FP. In this review we examine assays for cyclic adenosine monophosphate, phosphodiesterases, and protein kinases and phosphatases using FP competitive immunoassays and a direct enzymatic method called IMAP.  相似文献   

17.
Advances in high throughput screening (HTS), together with the rapid progress in combinatorial chemistry, genomic and proteomic sciences have dramatically stimulated the development of a variety tools to enable the drug discovery process to become more efficient. Major future challenges in HTS include obtaining high density and good quality data based on assays that are rapid, reliable, inexpensive, sensitive, simple and miniaturised. This paper reviews the development and role of bead-based assays for HTS including DNA and single nucleotide polymorphism (SNP) assays, particularly from a multiplex perspective and evaluating the recent advances in bead-based arrays. The encoding strategies that are commonly used in bead-based assays are highlighted, while the importance of magnetic beads in genomic and proteomic purifications is discussed. In conclusion, bead-based assays offer a powerful promising approach for many aspects of drug discovery.  相似文献   

18.
This article describes a fluorescence polarization (FP)-based protease assay on a microfluidic device that is compatible with fast and reproducible analyses of protease activities. The optical systems were arranged for simultaneously measuring fluorescence intensities of vertical and horizontal polarization planes, and the binding of tetramethylrhodamine (TMR) labeled-biotin with streptavidin was utilized for optimizing FP detection in continuously flowing solutions within 74-μm wide, 12-μm deep microchannels of a glass chip. In developing off-chip FP-based assays for proteinase K, trypsin, papain and elastase, TMR conjugated-casein protein (TMR-α-casein) was employed as a universal substrate. After optimization of the hydrodynamic flow control to allow complete mixing of TMR-α-casein and short proteolysis time as possible, and of buffer composition to minimize protein sticking problems, the developed assay was transferred to the microfluidic chip by monitoring FP changes of TMR-α-casein in the main microchannel. The results indicate that the proposed device would serve as an integrated microfluidic platform with automated injection of reacting species, diffusion-controlled mixing, reaction and detection for protease activities without the need to separate the products.  相似文献   

19.
Here, we combine T7 exonuclease (T7 Exo) signal amplification and polystyrene nanoparticle (PS NP) amplification to develop novel fluorescence polarization (FP) aptasensors. The binding of a target/open aptamer hairpin complex or a target/single‐stranded aptamer complex to dye‐labeled DNA bound to PS NPs, or the self‐assembly of two aptamer subunits (one of them labeled with a dye) into a target/aptamer complex on PS NPs leads to the cyclic T7 Exo‐catalyzed digestion of the dye‐labeled DNA or the dye‐labeled aptamer subunit. This results in a substantial decrease in the FP value for the amplified sensing process. Our newly developed aptasensors exhibit a sensitivity five orders of magnitude higher than that of traditional homogeneous aptasensors and a high specificity for the target molecules. These distinct advantages of our proposed assay protocol make it a generic platform for the design of amplified aptasensors for ultrasensitive detection of various target molecules.  相似文献   

20.
Allele-specific polymerase chain reaction is based on polymerase extension from primers that contain a 3' end base that is complementary to a specific mutation and inhibition of extension with wild-type DNA due to a 3' end mismatch. Taq polymerase is commonly used for this assay, but because of the high rate of nucleotide extension from primer 3' base mismatches documented for Taq polymerase, high sensitivity is difficult to achieve. To determine whether other polymerases might improve assay sensitivity, 15 polymerases were tested with mutation-specific primers for two ultraviolet-induced mutations in the human 5S ribosomal RNA genes. Of the 15 polymerases tested, six were capable of discriminating these mutations at levels equivalent to or better than Taq polymerase. All primers were phosphorothioate modified on the 3' end to block removal of the critical 3' mutation-specific base by polymerases containing 3' --> 5' exonuclease "proofreading" activity. The effectiveness of phosphorothioate modification was measured in mock polymerase chain reaction reactions and a time course. All six enzymes containing this exonuclease activity showed some ability to digest phosphorothioate-modified primers and could be divided into two groups, showing fast and slow digestion kinetics. Of the three enzymes that showed slow digestion kinetics, two also showed significantly slower digestion kinetics of unmodified primers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号