首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of surface treatment of porous silicon in iodine-containing solutions on its photoluminescent properties has been investigated. The porous silicon samples were prepared by anodizing in HF-based electrolytes and placed in fluoride-hydrogen solutions with the addition of iodine immediately after their formation. The surface condition was controlled by IR Fourier spectroscopy methods in the 400–4000-cm–1 range. It has been established that the result of the porous silicon treatment in iodine-containing solutions is a decrease in the intensity of Si–H x -bonds without the appearance of additional vibrations in the range under investigation. At the same time, such a treatment substantially affects the spectrum and intensity of porous silicon photoluminescence and increases its stability in subsequent storage. The possible reasons for the revealed phenomena are discussed.  相似文献   

2.
The experimental measurements of density, viscosity and ultrasonic velocity of aqueous glycerol solutions were carried out as functions of concentration (0.1 ≤ m [mol kg− 1] ≤ 1.0) and temperature (303.15 ≤ T [K] ≤323.15). The isentropic compressibility (βs), acoustic impedance (Z), hydration number (Hn), intermolecular free length (Lf), classical sound absorption (α/f2)class and shear relaxation time (τ) were calculated by using the measured data. These parameters have been interpreted in terms of solute–solvent interactions. The quantum chemical calculations were performed to study the hydrogen bonding in interacting complex formed between glycerol and water molecules. Computations have been done by using Density Functional Theory (DFT) method at B3LYP/6–31 + g(d) level of theory to study the equilibrium structure of glycerol, glycerol–water interacting complex and vibrational frequencies. The solution phase study was carried out using Onsager's reaction field model in water solvent. The computed vibrational frequencies are in good agreement with the main features of the experimental spectrum when four water molecules are considered explicitly with glycerol. The interaction energy (Etotal), hydrogen bond lengths and dipole moment (µm) of the interacting complex are also presented and discussed with in the light of solute–solvent interactions.  相似文献   

3.
刘高洁  郭照立  施保昌 《物理学报》2016,65(1):14702-014702
多孔介质中高Péclet数和大黏性比下混溶流体的流动和扩散广泛存在于二氧化碳驱油、化工生产等工业过程中.用数值方法对该问题进行研究时,关键在于如何正确描述高Péclet数和大黏性比下多孔介质内流体的行为.为此,提出了一种基于多松弛模型和格子动理模型的耦合格子Boltzmann模型.通过Chapman-Enskog分析,证明该模型能有效求解不可压Navier-Stokes方程和对流扩散方程.数值结果表明,该模型不仅具有二阶精度和良好的稳健性,而且对于高Péclet数和大黏性比的问题具有良好的数值稳定性,为模拟此类问题提供了有效工具.  相似文献   

4.
Deuterium NMR spectroscopy has been employed to characterize the concentration dependence of orientational order in DMPC/DHPC bicellar solutions with molar ratiosq= [DMPC]/[DHPC] = 3.3, 2.7, and 2.3. The stability of a discotic nematic phase can, in general, be predicted from a simple Onsager picture involving the size and concentration of the mesogenic unit, but for the bicellar solutions this model is not adequate. Specifically, macroscopic alignment is observed at total lipid concentrations well below that, 1–10% (w/w) predicted by Onsager's model. Thus the discotic nematic phase is stable to ≈3–5% (w/w) forq= 3.3–2.3, and the bicellar order is highest just before phase separation occurs at the minimum total phospholipid concentration. This implies the presence of a DHPCbic DHPCsolequilibrium in establishing bicellar size, thereby extending the range of concentrations for which alignment occurs. Bicellar morphology has been verified for a wide range of concentrations, temperatures, andq-values, but as viscosity measurements demonstrate, major morphological changes take place as the temperature is reduced below 30°C.  相似文献   

5.
Heat transfer behaviours of nanofluids in a uniformly heated tube   总被引:2,自引:0,他引:2  
In the present work, we consider the problem of the forced convection flow of water– γAl2O3 and ethylene glycol– γAl2O3 nanofluids inside a uniformly heated tube that is submitted to a constant and uniform heat flux at the wall. In general, it is observed that the inclusion of nanoparticles has increased considerably the heat transfer at the tube wall for both the laminar and turbulent regimes. Such improvement of heat transfer becomes more pronounced with the increase of the particle concentration. On the other hand, the presence of particles has produced adverse effects on the wall friction that also increases with the particle volume concentration. Results have also shown that the ethylene glycol– γAl2O3 mixture gives a far better heat transfer enhancement than the water– γAl2O3 mixture.  相似文献   

6.
The mechanical properties and flow behavior in porous media of three different polymer systems including a hydrophobically modified acrylamide-based copolymer (HMSPAM), a partially hydrolyzed polyacrylamide (HPAM), and a polysaccharide (xanthan gum) were evaluated to establish their functional differentiation as mobility control agents in enhanced oil recovery (EOR). The rheological properties of the polymers were described by the power-law model to investigate their non-Newtonian behavior. The first normal stress difference (N1) and Weissenberg number (We) were also used to compare their elastic properties. The experimental results showed that, at comparable shear viscosity, HMSPAM exhibited significant elasticity compared to HPAM and xanthan gum. Shear resistance tests indicated that all of the polymers experienced an extra stress when converging into a capillary tube due to the “entrance effect.” Xanthan gum was the most mechanically stable polymer. Moreover, HMSPAM showed the superior reformability which was quantified by the regained viscosity with relaxation time. This could be explained by the rapid re-association of the hydrophobic interactions. Sandpack flood tests indicated that HMSPAM rendered extremely high mobility control ability during polymer flooding suggesting its potential in EOR. However, this polymer also experienced significant retention within the porous media (potential injectivity and plugging problems), which may be attributed to the formation of bulky associative polymer networks. In this work, UV spectrometry was employed to monitor the concentration of the produced polymer solutions and quantify the polymer retention within porous media. This analytical approach offers great reliability and simplicity. It was concluded that the use of a particular polymer system depends on the oil reservoir conditions and the target EOR application.  相似文献   

7.
We present the results of comparative measurements of spectral–luminescent characteristics of Rhodamine 6G and Rhodamine C in water and water–gelatin solutions. We found that gelatin added to a water solution disaggregates the molecules of the dye. The maxima of the absorption and luminescence spectra of the solution shift then to the longwave region. The quantum yield of luminescence and the efficiency of generation of the solutions investigated are measured. The generation intensity of the gel is shown to depend on its composition and the dye selected. Measurement of spectral–luminescent characteristics of water–gelatin solutions makes it possible to select dyes that would generate most efficiently in gel solutions.  相似文献   

8.
Charge transport was studied in composites of poly[2-methoxy-5-(2′-ethyl-hexyloxy)-p-phenylene-vinylene] (MEH-PPV) conjugate polymer and low-concentration fullerenes (C60) below the percolation threshold. The electron mobility showed a linear increase with the fullerene concentration, to which the hole mobility was insensitive. Our results indicate that fullerene–polymer networks provide a conduction path to the electrons, whereas the holes are transported through the polymer-only paths. The microscopic environments of the two distinct conduction paths in the composites as revealed by the electric field dependence of the mobilities are also discussed.  相似文献   

9.
The 20 kHz ultrasound-induced degradation of non-steroidal, anti-inflammatory drug diclofenac (DCF) was investigated. Several operating conditions, such as power density (25–100 W/L), substrate concentration (2.5–80 mg/L), initial solution pH (3.5–11), liquid bulk temperature and the type of sparging gas (air, oxygen, argon), were tested concerning their effect on DCF degradation (as assessed measuring absorbance at 276 nm) and hydroxyl radicals generation (as assessed measuring H2O2 concentration). Sample mineralization (in terms of TOC and COD removal), aerobic biodegradability (as assessed by the BOD5/COD ratio) and ecotoxicity to Daphnia magna and Artemia salina were followed too.DCF conversion is enhanced at increased applied power densities and liquid bulk temperatures, acidic conditions and in the presence of dissolved air or oxygen. The reaction rate increases with increasing DCF concentration in the range 2.5–5 mg/L but it remains constant in the range 40–80 mg/L, indicating different kinetic regimes (i.e. first and zero order, respectively). H2O2 production rates in pure water are higher than those in DCF solutions, implying that decomposition basically proceeds through hydroxyl radical reactions. Mineralization is a slow process as reaction by-products are more stable than DCF to total oxidation; nonetheless, they are also more readily biodegradable. Toxicity to D. magna increases during the early stages of the reaction and then decreases progressively upon degradation of reaction by-products; nevertheless, complete toxicity elimination cannot be achieved at the conditions in question. Neither the original nor the treated DCF samples are toxic to A. salina.  相似文献   

10.
The Newtonian viscosity behavior of dilute to moderately concentrated solutions of cellulose acetate butyrate in dioxane was investigated at different temperatures. The viscosity data were analyzed in terms of Martin's and Fedor's relationships and also generalized in terms of reduced variables. The rheological behavior of cellulose acetate butyrate solutions in the whole range of concentrations is determined by the parameter (KMC [n]). The temperature dependence of viscosities was expressed by the Arrhenius-Frenkel-Eyring equation and the activation energy of viscous flow of polymer solutions (ΔGv) was calculated. ΔGv increases with concentration of polymer solution and is independent of temperature. The preexponential factor, A, related to activation entropy, decreases with concentration of polymer solution. The thermodynamic parameter of viscous flow for cellulose acetate butyrate (CAB)-dioxane solutions is indicative of moderately stiff structure for CAB in solutions.  相似文献   

11.
The stability of a planar surface upon pulsed UV-laser irradiation is studied with special emphasis on polymer ablation. Here, we consider a two-level system in which the excitation energy is dissipated via stimulated emission, non-radiative transitions, and activated desorption of excited species. With thermal relaxation times t T10–10 s the ablation front turns out to become stable. This could explain the smooth surfaces obtained after pulsed UV-laser ablation of pure and stress free organic polymers. The situation is quite different for materials, for example metals, where fast thermal relaxation of the excitation energy within times, typically, t T<10–11 s, gives rise to instabilities which result in surface roughening.On leave from the Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, RussiaOn leave from the Institute of Applied Physics, Russian Academy of Sciences, 603600 Nishnii Novgorod, Russia  相似文献   

12.
The authors compare the results of fluorescence anisotropy decay measurements for glycerol solutions of perylene with those of 3,9-dibromoperylene (DBP). For both molecules a good linear dependence is observed between the glycerol viscosity (varied by temperature) and the longer rotational correlation time obtained as a result of a global (using data obtained at 256- and 430-nm excitation wavelengths) biexponential analysis of the fluorescence anisotropy decay, at least in the range of 7–60 P for perylene and 4–60 P for DBP. This significantly extends the reported range of 0.5 to 150 cP investigated by Williams and Ben-Amotz [1] with the probe BTBP.  相似文献   

13.
We study a boundary version of the gauged WZW model with a Poisson–Lie group G as the target. The Poisson–Lie structure of G is used to define the Wess–Zumino term of the action on surfaces with boundary. We clarify the relation of the model to the topological Poisson sigma model with the dual Poisson–Lie group G * as the target and show that the phase space of the theory on a strip is essentially the Heisenberg double of G introduced by Semenov–Tian–Shansky.  相似文献   

14.
The surface modification and adhesive bonding of a unidirectional GFRP Nylon-6,6 thermoplastic composite has been investigated. Wettability studies of plasma-treated specimens showed a significant reduction in the advancing and receding contact angles in water, relative to untreated material. The most effective treatment used oxygen plasma. The increases in wettability observed were determined to be the result of (a) an increase in the concentration of oxygen- and nitrogen-containing functional groups on the surface of the polymer and, (b) removal of fluoropolymer contamination, the source of which was identified as the PTFE mould release agent. This was established by SSIMS analysis. The surface modification resulted in significantly improved adhesion between the composite and an applied toughened epoxy adhesive; a considerable increase in the Mode II critical strain energy release rate, G IIc, was observed following plasma treatment. Specimens treated in an oxygen plasma showed the greatest improvement in G IIc, failing cohesively at a value of 1.6 kJ·m–2 after only 15 seconds exposure. Without plasma treatment the specimens failed in an adhesive mode at very low values of G IIc. Adhesion was further optimised by moulding the GFRP Nylon-6,6 against steel plates instead of PTFE.  相似文献   

15.
This paper presents a systematic procedure based on the adjoint method for solving a class of inverse directional alloy solidification design problems in which a desired growth velocityvfis achieved under stable growth conditions. To the best of our knowledge, this is the first time that a continuum adjoint formulation is proposed for the solution of an inverse problem with simultaneous heat and mass transfer, thermo-solutal convection, and phase change. In this paper, the interfacial stability is considered to imply a sharp solid–liquid freezing interface. This condition is enforced using the constitutional undercooling criterion in the form of an inequality constraint between the thermal and solute concentration gradients,GandGc, respectively, at the freezing front. The main unknowns of the design problem are the heating and/or cooling boundary conditions on the mold walls. The inverse design problem is formulated as a functional optimization problem. The cost functional is defined by the square of theL2norm of the deviation of the freezing interface temperature from the temperature corresponding to thermodynamic equilibrium. A continuum adjoint system is derived to calculate the adjoint temperature, concentration, and velocity fields such that the gradient of the cost functional can be expressed analytically. The cost functional minimization process is realized by the conjugate gradient method via the finite element method solutions of the continuum direct, sensitivity, and adjoint problems. The developed formulation is demonstrated with an example of designing the directional solidification of a binary aqueous solution in a rectangular mold such that a stable vertical interface advances from left to right with a desired growth velocity.  相似文献   

16.
We study flame acceleration and deflagration-to-detonation transition (DDT) in channels with obstacles using 2D and 3D reactive Navier–Stokes numerical simulations. The energy release rate for the stoichiometric H2–air mixture is modeled by a one-step Arrhenius kinetics. Computations show that at initial stages, the flame and flow acceleration is caused by thermal expansion of hot combustion products. At later stages, shock–flame interactions, Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz instabilities, and flame–vortex interactions in obstacle wakes become responsible for the increase of the flame surface area, the energy-release rate, and, eventually, the shock strength. Computations performed for different channel widths d with the distance between obstacles d and the constant blockage ratio 0.5 reproduce the main regimes observed in experiments: choking flames, quasi-detonations, and detonations. For quasi-detonations, both the initial DDT and succeeding detonation reignitions occur when the Mach stem, created by the reflection of the leading shock from the bottom wall, collides with an obstacle. As the size of the system increases, the time to DDT and the distance to DDT increase linearly with d2. We also observe an intermediate regime of fast flame propagation in which local detonations periodically appear behind the leading shock, but do not reach it.  相似文献   

17.
Hydrogen offers an attractive alternative to conventional fuels for use in spark ignition engines. It can be burned over a very wide range of equivalence ratios and with considerable exhaust gas recirculation. These help to minimise pumping losses through throttleless operation and oxides of nitrogen (NOx) production through reduced temperature. Full understanding of hydrogen-fuelled engine operation requires data on the laminar burning rate of hydrogen–air residuals under a wide range of conditions. However, such data are sparse. The present work addresses this need for experimental data. Spherically expanding H2–air flames were measured at a range of temperatures, pressures, and equivalence ratios and with varying concentrations of residuals of combustion. Unstretched burning velocities, ul, and Markstein lengths, Lb, were determined from stable flames. At the higher pressures, hydrodynamic and diffusional-thermal instabilities caused the flames to be cellular from inception and prohibited the derivation of values of ul and Lb. The effect of pressure on the burning rate was demonstrated to have opposing trends when comparing stoichiometric and lean mixtures. The present measurements were compared with those available in the literature, and discrepancies were attributed to neglect, in some works, the effects of stretch and instabilities. From the present measurements, the effects of pressure, temperature, and residual gas concentration on burning velocity are quantified for use in a first step towards a general correlation.  相似文献   

18.
For a compact group G of symplectomorphisms we define a G-trace on the algebra of quantum observables by postulating its properties. We give an explicit construction of such a trace and prove a G-index theorem similar to the Atiyah–Segal–Singer equivariant index theorem for elliptic operators.  相似文献   

19.
A cosmological model with variable G and is considered in the framework of Israel–Stewart–Hiscock (ISH) causal theory. Power law as well as inflationary solutions are obtained. The gravitational constant is found to increase with time.  相似文献   

20.
Electrolyte viscosity plays an important role in ion transport. Here we study the effects of high viscosity variations in thin-layer electrochemical deposition (ECD) under constant-current conditions through experimental measurements and theoretical modelling. The viscosity was varied through glycerol and polymer additions and the tracking of convective fronts was performed through the use of optical and particle image velocimetry techniques with micron sized particles. The theoretical model, written in terms of dimensionless quantities, describes diffusive, migratory and convective ion transport in a fluid under constant-current conditions. Experiments reveal that as viscosity increases, convection decreases, while concentration gradients increase. These effects are more pronounced when the current increases. Theory and simulations predict that as viscosity increases, the Poisson and Reynolds numbers decrease whereas the Peclet and electric Grashof numbers increase. Therefore, electroconvection becomes more relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号