首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple and cost-effective GC × GC modulator requiring no moving parts or consumables, hence suitable for field analysis and monitoring, was developed. The modulator was constructed from a specially designed Silcosteel® trapping capillary, installed outside the GC oven, and coated inside with polydimethylsiloxane (PDMS) stationary phase. Dual-stage modulation was accomplished by resistively heating alternate segments of the trap with a custom-designed capacitive discharge power supply. The performance of the proposed modulator was comparable to many GC × GC systems currently in use, with the injection band widths as low as 60 ms at half height. With proper selection of the stationary phase in the trap, the modulator can be used for the analysis of complex mixtures with volatility range spanning from n-C5 to n-C40.  相似文献   

2.
Volatile constituents in wine and brewed coffee were analyzed using a combined system incorporating both GC-olfactometry (GC-O) and comprehensive two-dimensional GC-flame ionization detection (GC×GC-FID). A column set consisting of a 15m first dimension ((1)D; DB-FFAP (free fatty acid phase)), and a 1.0m (2)D column (DB-5 phase) was applied to achieve the GC×GC separation of the volatile extracts isolated by using solid phase extraction (SPE). While 1D GC resulted in many overlapping peaks, GC×GC allowed resolution of co-eluting compounds which coincided with the odour region located using GC-O. Character-impact odourants were tentatively identified through data correlation of GC×GC contour plots across results obtained using either time-of-flight mass spectrometry (TOFMS), or with flame photometric detection (FPD) for sulfur speciation. The odourants 2-methyl-2-butenal, 2-(methoxymethyl)-furan, dimethyl trisulfide, 2-ethyl-5-methyl-pyrazine, 2-octenal, 2-furancarboxaldehyde, 3-mercapto-3-methyl-1-butanol, 2-methoxy-3-(2-methylpropyl)-pyrazine, 2-furanmethanol and isovaleric acid were suspected to be particularly responsible for coffee aroma using this approach. The presented methodology was applied to identify the potent odourants in two different Australian wine varietals. 1-Octen-3-ol, butanoic acid and 2-methylbutanoic acid were detected in both Merlot and a Sauvignon Blanc+Semillon (SV) blend with high aroma potency. Several co-eluting peaks of ethyl 4-oxo-pentanoate, 3,7-dimethyl-1,5,7-octatrien-3-ol, (Z)-2-octen-1-ol, 5-hydroxy-2-methyl-1,3-dioxane were likely contributors to the Merlot wine aroma; while (Z)-3-hexen-1-ol, β-phenylethyl acetate, hexanoic acid and co-eluting peaks of 3-ethoxy-1-propanol and hexyl formate may contribute to SV wine aroma character. The volatile sulfur compound 2-mercapto-ethyl acetate was believed to contribute a fruity, brothy, meaty, sulfur odour to Australian Merlot and SV wines.  相似文献   

3.
Future understanding of differences in the composition and sensory attributes of wines require improved analytical methods which allow the monitoring of a large number of volatiles including those present at low concentrations. This study presents the optimization and application of a headspace solid-phase microextraction (HS-SPME) method for analysis of wine volatiles by comprehensive two-dimensional gas chromatography (GC×GC) time-of-flight mass spectrometry (TOFMS). This study demonstrates an important advancement in wine volatile analysis as the method allows for the simultaneous analysis of a significantly larger number of compounds found in the wine headspace compared to other current single dimensional GC-MS methodologies. The methodology allowed for the simultaneous analysis of over 350 different tentatively identified volatile and semi-volatile compounds found in the wine headspace. These included potent aroma compound classes such as monoterpenes, norisoprenoids, sesquiterpenes, and alkyl-methoxypyrazines which have been documented to contribute to wine aroma. It is intended that wine aroma research and wine sensory research will utilize this non-targeted method to assess compositional differences in the wine volatile profile.  相似文献   

4.
Perinatal asphyxia is a leading cause of brain injury in infants, occurring in 2-4 per 1000 live births. The clinical response to asphyxia is variable and difficult to predict with current diagnostic tests. Reliable biomarkers are needed to help predict the timing and severity of asphyxia, as well as response to treatment. Two-dimensional gas chromatography-time-of-flight-mass spectrometry (GC×GC-TOFMS) was used herein, in conjunction with chemometric data analysis approaches for metabolomic analysis in order to identify significant metabolites affected by birth asphyxia. Blood was drawn before and after 15 or 18 min of cord occlusion in a Macaca nemestrina model of perinatal asphyxia. Postnatal samples were drawn at 5 min of age (n=20 subjects). Metabolomic profiles of asphyxiated animals were compared to four controls delivered at comparable gestational age. Fifty metabolites with the greatest change pre- to post-asphyxia were identified and quantified. The metabolic profile of post-asphyxia samples showed marked variability compared to the pre-asphyxia samples. Fifteen of the 50 metabolites showed significant elevation in response to asphyxia, ten of which remained significant upon comparison to the control animals. This metabolomic analysis confirmed lactate and creatinine as markers of asphyxia and discovered new metabolites including succinic acid and malate (intermediates in the Krebs cycle) and arachidonic acid (a brain fatty acid and inflammatory marker) as potential biomarkers. GC×GC-TOFMS coupled with chemometric data analysis are useful tools to identify acute biomarkers of brain injury. Further study is needed to correlate these metabolites with severity of disease, and response to treatment.  相似文献   

5.
The alignment algorithm Statistical Compare (SC) developed by LECO Corporation for the processing of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) data was validated and compared to the in-house developed retention time correction and data alignment tool INCA (Integrative Normalization and Comparative Analysis) by a spike-in experiment and the comparative metabolic fingerprinting of a wild type versus a double mutant strain of Escherichia coli (E. coli). Starting with the same peak lists generated by LECO's ChromaTOF software, the accuracy of peak alignment and detection of 1.1- to 4-fold changes in metabolite concentration was assessed by spiking 20 standard compounds into an aqueous methanol extract of E. coli. To provide the same quality input signals for both alignment routines, the universal m/z 73 trace of the trimethylsilyl (TMS) group was used as a quantitative measure for all features. The performance of data processing and alignment was evaluated and illustrated by ROC curves. Statistical Compare performed marginally better at the lower fold changes, while INCA did so at the higher fold changes. Using SC, quantitative precision could be improved substantially by exploiting the signal intensities of metabolite-specific unique (U) m/z ion traces rather than the universal m/z 73 trace. A list of 56 features that distinguished the two E. coli strains was obtained by the SC alignment using m/z U with an estimated false discovery rate (FDR) of <0.05. Ultimately, 23 metabolites could be identified, one additional and five less than with INCA due to the failure of SC to extract unitized m/z U's across all fingerprints with suitable spectral intensities for the latter metabolites.  相似文献   

6.
The potential of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) in the quantitative analysis of amino acid enantiomers (AAEs) as their methyl chloroformate (MCF) derivatives in physiological fluids was investigated. Of the two column sets tested, the combination of an Rt-γDEXsa chiral column with a polar ZB-AAA column provided superior selectivity. Twenty AAEs were baseline resolved including L-Leu and D-Ile, which had failed separation by one-dimensional chiral GC-quadrupole-MS (GC-qMS). Lower limits of quantification (LLOQ) were in the range of 0.03-2 μM. Reproducibility of the analysis of a serum specimen in octaplicate ranged from 1.3 to 16.6%. The GC×GC-TOFMS method was validated by analyzing AAEs in 48 urine and 43 serum specimens, respectively, and by comparing the results with data obtained by a previously validated GC-qMS method. Mean recoveries ranged from 78.4% for D-Leu to 116.4% for D-Pro in urine and 72.2% for L-Thr to 129.4% for L-Ile in serum. The method was applied to the comparison of AAE serum levels in patients suffering from liver cirrhosis to a control group. Significantly increased D-AA concentrations were found for the patient group, whereas L-AA levels were slightly decreased.  相似文献   

7.
18α(H)-, 18β(H)-oleanane and lupane are angiosperm-derived biomarkers that are used as age indicators for the Late Cretaceous onwards when the first proliferation of angiosperms occurred. In addition, the 18α(H)-/18β(H)-oleanane ratio is employed as a thermal maturity parameter of crude oil. However, evidence has shown that accurate quantification of these compounds has been impeded by inadequate chromatographic separation by traditional one-dimensional gas chromatography. In this study, we present the separation of 18α(H)-, 18β(H)-oleanane and lupane with comprehensive two-dimensional gas chromatography (GC×GC). Furthermore, it was observed that 18β(H)-oleanane elutes earlier than 18α(H)-oleanane in second dimension (polarity) which we attribute to steric hindrance effects. Two GC conditions have been developed in order to achieve baseline separation of the triterpenoids of interest in complex mixtures such as sediment extracts and crude oils.  相似文献   

8.
Pyrolysis oils have attracted a lot of interest, as they are liquid energy carriers and general sources of chemicals. In this work, gas chromatography with flame ionization detector (GC-FID) and two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) techniques were used to provide both qualitative and quantitative results of the analysis of three different pyrolysis oils. The chromatographic methods and parameters were optimized and solvent choice and separation restrictions are discussed. Pyrolysis oil samples were diluted in suitable organic solvent and were analyzed by GC×GC-TOFMS. An average of 300 compounds were detected and identified in all three samples using the ChromaToF (Leco) software. The deconvoluted spectra were compared with the NIST software library for correct matching. Group type classification was performed by use of the ChromaToF software. The quantification of 11 selected compounds was performed by means of a multiple-point external calibration curve. Afterwards, the pyrolysis oils were extracted with water, and the aqueous phase was analyzed both by GC-FID and, after proper change of solvent, by GC×GC-TOFMS. As previously, the selected compounds were quantified by both techniques, by means of multiple point external calibration curves. The parameters of the calibration curves were calculated by weighted linear regression analysis. The limit of detection, limit of quantitation and linearity range for each standard compound with each method are presented. The potency of GC×GC-TOFMS for an efficient mapping of the pyrolysis oil is undisputable, and the possibility of using it for quantification as well has been demonstrated. On the other hand, the GC-FID analysis provides reliable results that allow for a rapid screening of the pyrolysis oil. To the best of our knowledge, very few papers have been reported with quantification attempts on pyrolysis oil samples using GC×GC-TOFMS most of which make use of the internal standard method. This work provides the ground for further analysis of pyrolysis oils of diverse sources for a rational design of both their production and utilization process.  相似文献   

9.
This study evaluates comprehensive two-dimensional gas chromatography (GC×GC) coupled to time-of-flight mass spectrometry (GC×GC-ToF MS) for the simultaneous analysis of several classes of organobromines (OBs), including polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), methoxylated PBDEs (MeO-PBDEs), several halogenated naturally produced compounds (HNPs) and eight novel brominated flame retardants (NBFRs), polybrominated hexahydroxanthene derivates (PBHDs), 2,4,6-tribromoanisole and a mixed halogenated compound (MHC-1), in bluefin tuna muscles. The proposed methodology maximised separation of both within and among OB families, and among these and other halogenated micropollutants detected in these samples and co-extracted matrix components. Special attention has been paid to solve co-elution problems observed during the analysis of OBs with one-dimensional GC-based techniques. Satisfactory separation among several relevant PBDEs and MeO-PBDEs has been obtained allowing their unambiguous determination in a single run. Additional studies were conducted to identify selected NBFRs and HNPs. 2,4-Dibromoanisole, a dibromophenol isomer and hexabromobenzene were identified in the investigated samples. Several new tri- and tetra-BHD derivates were also identified, indicating that these compounds could apparently exist as structured families in nature. In addition, a tetrabrominated diMeO-biphenyl and two tetrabrominated diMeO-BDEs were also tentatively identified.  相似文献   

10.
A GC-μECD and a GC×GC-μECD method were developed for the analysis of pesticides in sediments. For 1D-GC, instrumental LOD and LOQ were found in the range from 0.60 to 2.31μgL(-1) and 1.83 to 5.62μgL(-1), respectively. For GC×GC method development two sets of columns were tested (DB-5/DB-17ms, and HP-50+/DB-1ms), and the best results were obtained with the set of columns DB-5/DB-17ms. Instrumental LOD and LOQ were found in the range from 0.08 to 1.07μgL(-1) and 0.25 to 3.23μgL(-1), respectively. The LOD for the GC×GC was about 36% lower than those obtained for the 1D-GC. Concentrations of 21.18μgkg(-1) through 1D-GC method and 3.34μgkg(-1) for GC×GC for trifloxystrobin were found in a sediment sample which was collected close to an area of rice plantation.  相似文献   

11.
In this work the higher peak capacity and resolution of comprehensive two-dimensional gas chromatography (GCxGC) has been successfully applied, for the first time, to tentatively identify several polar organic compounds of organic extracts of aqueous phases resulting from microwave demulsification process of water-in-crude oil emulsions. Results have shown that higher temperatures and longer exposure time to microwave irradiation produced water phases with a wider variety of polar organic compounds. The microwave process showed to be suitable for the extraction of several polar compounds classes of petroleum. The proposed microwave extraction method and GCxGC identification of polar compounds of petroleum samples are of practical interest for the petrochemical industry due to corrosion and related problems associated with these polar compounds in refinery equipments. The GCxGC/time-of-flight MS technique shows to be very important in the total separation of different classes of compounds and allows the identification of many compounds in these classes.  相似文献   

12.
The present investigation is focused on a simple flow modulator (FM), for comprehensive two-dimensional gas chromatography (GC×GC). The interface is stable at high temperatures, and consists of a metallic disc (located inside the GC oven) with seven ports, which are connected to an auxiliary pressure source via two branches, to the first and second dimension, to a waste branch (linked to a needle valve) and to an exchangeable modulation loop (2 ports). The ports are connected via micro-channels, etched on one of the inner surfaces of the disc. Modulation is achieved using a two-way electrovalve, connected on one side to the additional pressure source, and to the two metal branches, on the other. An FM enantio-GC×polar-GC method (using a flame ionization detector) was optimized (a 40-μL loop was employed), for the analysis of essential oils. As an example, an application on spearmint oil is shown; the method herein proposed was subjected to validation. Finally, an FM GC×GC diesel experiment was carried out, using an apolar-polar column combination, to demonstrate the effectiveness of the modulator in the analysis of a totally different sample-type.  相似文献   

13.
In the present work, the separation of complex nonylphenol technical mixtures has been optimized using comprehensive two-dimensional gas chromatography coupled with a flame ionization detector and quadrupole mass spectrometer (GC×GC-qMS), using valve-based modulator. The optimization of GC×GC-qMS has been carried out using experimental designs and the optimal separation was obtained at the following conditions: 1st column flow: 1mL/min; 2nd column flow: 17.75 mL/min, oven temperature ramp: 1°C/min, modulation period: 1.5s and discharge time: 0.12s. These values have been used to determinate the previously synthesized 22OP, 33OP, 363NP and 22NP isomers in two different nonylphenol technical mixtures. Percentages obtained were as follows: 4.86% and 0.59% for 22OP, 4.91% and 2.82% for 33OP, 11.79% and 7.71% for 363NP and 2.28% and 1.98% for 22NP, in Fluka and Aldrich mixtures, respectively. The values obtained for NP isomers are in good agreement with the literature.  相似文献   

14.
Retentivity tuning in comprehensive two dimensional GC separations of aliphatics (linear and cyclic hydrocarbons) and aromatics in gasoline by changing the carrier gas flows in the column series at constant working temperature parameters of both columns is discussed. Comprehensive 2D techniques studied include GC×GC with cryogenic and differential flow modulation and non-modulated transfer (NMT). In all configurations, the first dimension was a non-polar column and the second dimension a polar column. Using three different flows (0.6, 1.0 and 1.4mL/min) of helium carrier gas in cryogenic modulated GC×GC illustrated that, as expected, retention of the solutes on the (1)D and (2)D columns increased but the separation quality was nearly constant. A change of carrier gas pressure (p(m)=175-125kPa) on the (1)D and (2)D columns joint point at constant inlet pressure (p(i)=525kPa) in NMT, induces an increase of the carrier gas flow rate on the (1)D and a decrease on the (2)D column, respectively. The higher retentivity of the (2)D column improved the group type separation of aliphatic/cyclic hydrocarbons and aromatics and a higher distribution of aromatics on the 2D retention plane was noted. Retentivity tuning was also performed in flow modulated GC×GC by operating the (1)D column at 0.8mL/min and the (2)D column at 20 and 26mL/min. The higher retentivity at 20mL/min improved the group type separation of aliphatic/cyclic hydrocarbons and aromatics in the 2D retention plane.  相似文献   

15.
A method was developed to calculate the second dimension retention index of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) data using n-alkanes as reference compounds. The retention times of the C(7)-C(31) alkanes acquired during 24 isothermal experiments cover the 0-6s retention time area in the second dimension retention time space, which makes it possible to calculate the retention indices of target compounds from the corresponding retention time values without the extension of the retention space of the reference compounds. An empirical function was proposed to show the relationship among the second dimension retention time, the temperature of the second dimension column, and the carbon number of the n-alkanes. The proposed function is able to extend the second dimension retention time beyond the reference n-alkanes by increasing the carbon number. The extension of carbon numbers in reference n-alkanes up to two more carbon atoms introduces <10 retention index units (iu) of deviation. The effectiveness of using the proposed method was demonstrated by analyzing a mixture of compound standards in temperature programmed experiments using 6 different initial column temperatures. The standard deviation of the calculated retention index values of the compound standards fluctuated from 1 to 12 iu with a mean standard deviation of 5 iu.  相似文献   

16.
Fully synthetic jet fuel (FSJF) produced via Fischer-Tropsch (FT) technology was recently approved by the international aviation fuel authorities. To receive approval, comparison of FSJF and crude-derived fuel and blends on their qualitative and quantitative hydrocarbon composition was of utmost importance. This was performed by comprehensive two-dimensional gas chromatography (GC×GC) in the reversed phase mode. The hydrocarbon composition of synthetic and crude-derived jet fuels is very similar and all compounds detected in the synthetic product are also present in crude-derived fuels. Quantitatively, the synthetic fuel consists of a higher degree of aliphatic branching with less than half the aromatic content of the crude-derived fuel. GC×GC analyses also indicated the presence of trace levels of hetero-atomic impurities in the crude-derived product that were absent in the synthetic product. While clay-treatment removed some of the impurities and improved the fuel stability, the crude-derived product still contained traces of cyclic and aromatic S-containing compounds afterwards. Lower level of aromatics and the absence of sulphur are some of the factors that contribute to the better fuel stability and environmental properties of the synthetic fuel. GC×GC was further applied for the analysis of products during Jet Fuel Thermal Oxidation Testing (JFTOT), which measures deposit formation of a fuel under simulated engine conditions. JFTOT showed the synthetic fuel to be much more stable than the crude-derived fuel.  相似文献   

17.
In this study, simultaneous deconvolution and reconstruction of peak profiles in the first ((1)D) and second dimension ((2)D) of comprehensive two-dimensional (2D) gas chromatography (GC×GC) is achieved on the basis of the property of this new type of instrumental data. First, selective information, where only one component contributes to the peak elution window of a given modulation event, is employed for stepwise stripping of each (2)D peak with the help of pure components corresponding to that compound from the neighbouring modulations. Simulation based on an exponentially modified Gaussian (EMG) model aids this process, where the EMG represents the envelope of all (2)D peaks for that compound. The peak parameters can be restricted by knowledge of the pure modulated (2)D GC peaks derived from the same primary compound, since it is modulated into several fractions during the trapping and re-focusing process of the cryogenic modulation system according to the modulation period. Next, relative areas of all pure (2)D components of that compound are considered for reconstruction of the primary peak. This strategy of exploitation of the additional information provided by the second dimension of separation allows effective deconvolution of GC×GC datasets. Non-linear least squares curve fitting (NLLSCF) allows the resolved 2D chromatograms to be recovered. Accurate acquisition of the pure profiles in both (1)D and (2)D aids quantification of compositions and prediction of 2D retention parameters, which are of interest for qualitative and quantitative analysis. The ratio between the sum of squares of deconvolution residual and original peak response (R(rr)) is employed as an effective index to evaluate the resolution results. In this work, simulated and experimental examples are used to develop and test the proposed approach. Satisfactory performance for these studies is validated by minimum and maximum R(rr) values of 1.34e-7% and 1.09e-2%; and 1.0e-3% and 3.0e-1% for deconvolution of (1)D and (2)D peaks, respectively. Results suggest that the present technique is suitable for GC×GC data processing.  相似文献   

18.
A set of fourteen Madeira wines comprising wines produced from four Vitis vinifera L. varieties (Bual, Malvasia, Verdelho and Tinta Negra Mole) that were 3, 6, 10 and 17 years old was analysed using HPLC and an electronic tongue (ET) multisensor system. Concentrations of 24 organic acids, phenolic and furanic compounds were determined by HPLC. The ET consisting of 26 potentiometric chemical sensors with plasticized PVC and chalcogenide glass membranes was used. Significance of the effects of age and variety on the ET response and wine composition with respect to the organic acids, phenolics and furanic derivatives were evaluated using ANOVA—Simultaneous Component Analysis (ASCA). Significance of the effects was estimated using a permutation test (1000 permutations). It was found that effects of age, grape variety and their interaction were significant for the HPLC data set and only the effect of age was significant for the ET data. Calibration models of the HPLC and ET data with respect to the wine age and of the ET data with respect to the concentration of the organic acids and phenolics were calculated using PLS1 regression. Models were validated using cross-validation. It was possible to predict wine age from HPLC and ET data with the accuracy in cross-validation of 2.6 and 1.8 years respectively. The ET was capable of detecting the following components (mean relative error in cross-validation is shown in the parentheses): tartaric (8%), citric (5%), formic (12%), protocatehuic (5%), vanillic (18%) and sinapic (14%) acids, catechin (6%), vanillin (12%) and trans-resveratrol (5%). The ET capability of predicting Madeira wine age with good accuracy (1.8 years) as well as quantify of some organic acids and phenolic compounds was demonstrated.  相似文献   

19.
The applicability of comprehensive two-dimensional gas chromatography (GC×GC) for flavonoids analysis was investigated by separation and identification of flavonoids in standards, and a complex matrix natural sample. The modulation temperature was optimized to achieve the best separation and signal enhancement. The separation pattern of trimethylsilyl (TMS) derivatives of flavonoids was compared on two complementary column sets. Whilst the BPX5/BPX50 (NP/P) column set offers better overall separation, BPX50/BPX5 (P/NP) provides better peak shape and sensitivity. Comparison of the identification power of GC×GC-TOFMS against both the NIST05 MS library and a laboratory (created in-house) TOFMS library was carried out on a flavonoid mixture. The basic retention index information on high-performance capillary columns with a non-polar stationary phase was established and database of mass spectra of trimethylsilyl derivatives of flavonoids was compiled. TOFMS coupled to GC×GC enabled satisfactory identification of flavonoids in complex matrix samples at their LOD over a range of 0.5-10 μg/mL. Detection of all compounds was based on full-scan mass spectra and for each compound a characteristic ion was chosen for further quantification. This study shows that GC×GC-TOFMS yields high specificity for flavonoids derived from real natural samples, dark chocolate, propolis, and chrysanthemum.  相似文献   

20.
A method for the determination of ultra-trace amounts of organochlorine pesticides (OCPs) in river water was developed by using stir bar sorptive extraction (SBSE) followed by thermal desorption and comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry (SBSE-TD-GC×GC-HRTOF-MS). SBSE conditions such as extraction time profiles, phase ratio (β: sample volume/polydimethylsiloxane (PDMS) volume), and modifier addition, were examined. Fifty milli-liter sample including 10% acetone was extracted for 3 h using stir bars with a length of 20 mm and coated with a 0.5 mm layer of PDMS (PDMS volume, 47 μL). The stir bar was thermally desorbed and subsequently analyzed by GC×GC-HRTOF-MS. The method showed good linearity over the concentration range from 50 to 1000 pg L(-1) or 2000 pg L(-1) for all analytes, and the correlation coefficients (r(2)) were greater than 0.9903 (except for β-HCH, r(2)=0.9870). The limit of detection (LOD) ranged from 10 to 44 pg L(-1). The method was successfully applied to the determination of 16 OCPs at pg L(-1) to ng L(-1) in river water. The results agree fairly well with the values obtained by a conventional liquid-liquid extraction (LLE)-GC-HRMS (selected ion monitoring: SIM) method using large sample volume (20 L). The method also allows screening of non-target compounds, e.g. pesticides and their degradation products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) and metabolites in the same river water sample, by using full spectrum acquisition with accurate mass in GC×GC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号