首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The 5-HT3 receptor is a member of a neurotransmitter-gated ion channel family which includes nicotinic acetylcholine, GABAA, and glycine receptors. While antibodies specific for the 5-HT3A receptor subunit are plentiful, and have revealed a wealth of structural and functional information, few antisera exist for the detection of 5-HT3B receptor subunits. Here we describe the generation and characterisation of a rabbit polyclonal antiserum that specifically recognises 5-HT3B receptor subunits  相似文献   

2.

Background

Agomelatine is a melatonergic receptor agonist and a 5HT2C receptor antagonist that has shown antidepressant efficacy. In order to analyze separately the effect of the two receptorial components, rats were chronically treated with agomelatine, melatonin (endogenous melatonergic agonist), or S32006 (5-HT2C antagonist), and then subjected to acute footshock-stress.

Results

Only chronic agomelatine, but not melatonin or S32006, completely prevented the stress-induced increase of glutamate release in the rat prefrontal/frontal cortex.

Conclusions

These results suggest a potential synergy between melatonergic and serotonergic pathways in the action of agomelatine.  相似文献   

3.

Background

G protein-coupled receptors (GPCRs) interact with heterotrimeric GTP-binding proteins (G proteins) to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP) kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways.

Results

Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK) inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1) on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin.

Conclusion

These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.  相似文献   

4.

Background  

Recent in vitro evidence indicates that blockade of 5-hydroxytryptamine (5-HT) receptor 3 (5-HT3) is able to confer protection in different models of neuronal injury. The purpose of the present study was to investigate the effect of tropisetron, a 5-HT3 receptor antagonist, on infarct size and neurological score in a model of ischemic stroke induced by permanent middle cerebral artery occlusion (pMCAO) in the rat.  相似文献   

5.
The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ~75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists – in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.  相似文献   

6.

Background  

Cardiac vagal preganglionic neurons (CVPN) are responsible for the tonic, reflex and respiratory modulation of heart rate (HR). Although CVPN receive GABAergic and glutamatergic inputs, likely involved in respiratory and reflex modulation of HR respectively, little else is known regarding the functions controlled by ionotropic inputs. Activation of g-protein coupled receptors (GPCR) alters these inputs, but the functional consequence is largely unknown. The present study aimed to delineate how ionotropic GABAergic, glycinergic and glutamatergic inputs contribute to the tonic and reflex control of HR and in particular determine which receptor subtypes were involved. Furthermore, we wished to establish how activation of the 5-HT1A GPCR affects tonic and reflex control of HR and what ionotropic interactions this might involve.  相似文献   

7.

Background  

Cerebral ischemia results in a rapid increase in contractile cerebrovascular receptors, such as the 5-hydroxytryptamine type 1B (5-HT1B), angiotensin II type 1 (AT1), and endothelin type B (ETB) receptors, in the vessel walls within the ischemic region, which further impairs local blood flow and aggravates tissue damage. This receptor upregulation occurs via activation of the mitogen-activated protein kinase pathway. We therefore hypothesized an important role for B-Raf, the first signaling molecule in the pathway. To test our hypothesis, human cerebral arteries were incubated at 37°C for 48 h in the absence or presence of a B-Raf inhibitor: SB-386023 or SB-590885. Contractile properties were evaluated in a myograph and protein expression of the individual receptors and activated phosphorylated B-Raf (p-B-Raf) was evaluated immunohistochemically.  相似文献   

8.
Single-crystal plates of different sections of the (NH4)3ScF6 crystal have been investigated by polarization-optical microscopy and X-ray diffraction over a wide temperature range, including the temperatures of two known phase transitions and the third transition found recently. It is established that the symmetry of 5 phases changes in the following sequence: $\begin{gathered} O_h^5 - Fm3m(Z = 4) \leftrightarrow C_{2h}^5 - {{P12_1 } \mathord{\left/ {\vphantom {{P12_1 } {n1}}} \right. \kern-0em} {n1}}(Z = 2) \leftrightarrow C_{2h}^3 - {{I12} \mathord{\left/ {\vphantom {{I12} {m1}}} \right. \kern-0em} {m1}} \\ (Z = 16) \leftrightarrow C_i^1 - I\bar 1(Z = 16) \\ \end{gathered} $ .  相似文献   

9.

Abstract  

Silver nanocrystal superlattices (NCSs) stabilized by hexadecanethiol have been prepared through reduction of [Ag(hexadecanethiolate)] n , formed in situ by reaction of the organometallic precursor [Ag(C6F5)] and hexadecanethiol. The nanostructures have been characterized by transmission electron microscopy (TEM) and X-ray diffractometry (XRD). Several reaction parameters such as solvent (anisole or toluene), reaction temperature (150 or 120 °C) or silver:thiol ratio (1:1 or 2:1) have been studied. The NCSs are formed by silver nanoparticles which sizes range from 3.7 to 5.1 nm, depending on the reaction conditions. The formation a of lamellar phase of di-n-hexadecyldisulfide by oxidation of the hexadecanethiolate ligands bonded to Ag(I) is detected by XRD.  相似文献   

10.

Background  

We wanted to determine if changes in the expression of serotonin 2A receptor (5HT2A receptor) gene in the premammillary hypothalamus are associated with changes in reproductive neuroendocrine status. Thus, we compared 2 groups of ovariectomized-estradiol-treated ewes that expressed high vs low LH pulsatility in two different paradigms (2 groups per paradigm): (a) refractoriness (low LH secretion) or not (high LH secretion) to short days in pineal-intact Ile-de-France ewes (RSD) and (b) endogenous circannual rhythm (ECR) in free-running pinealectomized Suffolk ewes in the active or inactive stage of their reproductive rhythm.  相似文献   

11.

Background  

Dysfunctions in the serotonergic system have been implicated in several neurological disorders such as depression. Elderly individuals who have been diagnosed with clinical depression show elevated cases of neurodegenerative diseases. This has led to suggestions that modulating the serotonin (5-HT) system could provide an alternative method to current therapies for alleviating these pathologies. The neuroprotective effects of bilobalide in vitro have been documented. We aim to determine whether bilobalide affects the 5-HT system in the nematode C. elegans. The wild type worms, as well as well-characterized 5-HT mutants, were fed with bilobalide in a range of concentrations, and several 5-HT controlled behaviors were tested.  相似文献   

12.
Transition probabilities have been calculated for n = 0 and n = 1 transitions connecting the 5s2nl [ np (n=5-8); nf (n=4-5); nh (n=6-8); nk (n=8)] , 5s5pnl (nl=5d,6s), 5p3 and 5s2nl [ (ns (n=6-8); nd (n=5-8); ng (n=5-6); ni (n=7-8)] and 5s5p2 configurations of Xe VI. Core-polarization effects have been included in the framework of a Hartree-Fock approach. The accuracy of the present set of results has been assessed through comparisons with radiative lifetime measurements. Good agreement has been observed between theory and experiment.  相似文献   

13.

Background  

Adrenal chromaffin cells mediate acute responses to stress through the release of epinephrine. Chromaffin cell function is regulated by several receptors, present both in adrenergic (AD) and noradrenergic (NA) cells. Extracellular ATP exerts excitatory and inhibitory actions on chromaffin cells via ionotropic (P2X) and metabotropic (P2Y) receptors. We have taken advantage of the actions of the purinergic agonists ATP and UTP on cytosolic free Ca2+ concentration ([Ca2+]i) to determine whether P2X and P2Y receptors might be asymmetrically distributed among AD and NA chromaffin cells.  相似文献   

14.

Background

Late cerebral ischemia carries high morbidity and mortality after subarachnoid hemorrhage (SAH) due to reduced cerebral blood flow (CBF) and the subsequent cerebral ischemia which is associated with upregulation of contractile receptors in the vascular smooth muscle cells (SMC) via activation of mitogen-activated protein kinase (MAPK) of the extracellular signal-regulated kinase (ERK)1/2 signal pathway. We hypothesize that SAH initiates cerebrovascular ERK1/2 activation, resulting in receptor upregulation. The raf inhibitor will inhibit the molecular events upstream ERK1/2 and may provide a therapeutic window for treatment of cerebral ischemia after SAH.

Results

Here we demonstrate that SAH increases the phosphorylation level of ERK1/2 in cerebral vessels and reduces the neurology score in rats in additional with the CBF measured by an autoradiographic method. The intracisternal administration of SB-386023-b, a specific inhibitor of raf, given 6 h after SAH, aborts the receptor changes and protects the brain from the development of late cerebral ischemia at 48 h. This is accompanied by reduced phosphorylation of ERK1/2 in cerebrovascular SMC. SAH per se enhances contractile responses to endothelin-1 (ET-1), 5-carboxamidotryptamine (5-CT) and angiotensin II (Ang II), upregulates ETB, 5-HT1B and AT1 receptor mRNA and protein levels. Treatment with SB-386023-b given as late as at 6 h but not at 12 h after the SAH significantly decreased the receptor upregulation, the reduction in CBF and the neurology score.

Conclusion

These results provide evidence for a role of the ERK1/2 pathway in regulation of expression of cerebrovascular SMC receptors. It is suggested that raf inhibition may reduce late cerebral ischemia after SAH and provides a realistic time window for therapy.  相似文献   

15.

Background  

Sporadic late-onset Alzheimer's disease (AD) appears to evolve from an interplay between genetic and environmental factors. One environmental factor that continues to be of great interest is that of Chlamydia pneumoniae infection and its association with late-onset disease. Detection of this organism in clinical and autopsy samples has proved challenging using a variety of molecular and histological techniques. Our current investigation utilized immunohistochemistry with a battery of commercially available anti-C. pneumoniae antibodies to determine whether C. pneumoniae was present in areas typically associated with AD neuropathology from 5 AD and 5 non-AD control brains.  相似文献   

16.

Background

Recently a hyperthermic rat hippocampal slice model system has been used to investigate febrile seizure pathophysiology. Our previous data indicates that heating immature rat hippocampal slices from 34 to 41°C in an interface chamber induced epileptiform-like population spikes accompanied by a spreading depression (SD). This may serve as an in vitro model of febrile seizures.

Results

In this study, we further investigate cellular mechanisms of hyperthermia-induced initial population spike activity. We hypothesized that GABAA receptor-mediated 30–100 Hz γ oscillations underlie some aspects of the hyperthermic population spike activity. In 24 rat hippocampal slices, the hyperthermic population spike activity occurred at an average frequency of 45.9 ± 14.9 Hz (Mean ± SE, range = 21–79 Hz, n = 24), which does not differ significantly from the frequency of post-tetanic γ oscillations (47.1 ± 14.9 Hz, n = 34) in the same system. High intensity tetanic stimulation induces hippocampal neuronal discharges followed by a slow SD that has the magnitude and time course of the SD, which resembles hyperthermic responses. Both post-tetanic γ oscillations and hyperthermic population spike activity can be blocked completely by a specific GABAA receptor blocker, bicuculline (5–20 μM). Bath-apply kynurenic acid (7 mM) blocks synaptic transmission, but fails to prevent hyperthermic population spikes, while intracellular diffusion of QX-314 (30 mM) abolishes spikes and produces a smooth depolarization in intracellular recording.

Conclusion

These results suggest that the GABAA receptor-governed γ oscillations underlie the hyperthermic population spike activity in immature hippocampal slices.  相似文献   

17.
《Solid State Ionics》1988,27(3):189-194
The phosphatoantimonic acids HnSbnP2O3n+5, xH2O (n = 1, 3, 5) have been prepared from the corresponding potassium compounds by ion-exchange in acidic medium. For n = 1 and 3 they are layered materials. When n = 5 the covalent framework is three dimensional with large interconnected channels. The title acids are all hydrated and their water content, lattice parameters and protonic conductivity have been studied at 20°C as a function of the relative humidity. When n = 1 a great part of the water content is physisorbed and the electrical behavior is that of a particle hydrate. For n = 3, the compound is a true lattice hydrate and the protonic conductivity is closely related to the water content. This is also the case when n = 5; however the contribution of surface water to the proton diffusion is clearly evidenced.  相似文献   

18.

Background  

Calcium (Ca2+) has recently been shown to selectively increase the activity of monoamine oxidase-A (MAO-A), a mitochondria-bound enzyme that generates peroxyradicals as a natural by-product of the deamination of neurotransmitters such as serotonin. It has also been suggested that increased intracellular free Ca2+ levels as well as MAO-A may be contributing to the oxidative stress associated with Alzheimer disease (AD).  相似文献   

19.

Background

The aim of this study is to examine the influence of the catechol-O-methyltranferase (COMT) gene (polymorphism Val158 Met) as a risk factor for Alzheimer's disease (AD) and mild cognitive impairment of amnesic type (MCI), and its synergistic effect with the apolipoprotein E gene (APOE). A total of 223 MCI patients, 345 AD and 253 healthy controls were analyzed. Clinical criteria and neuropsychological tests were used to establish diagnostic groups. The DNA Bank of the University of the Basque Country (UPV-EHU) (Spain) determined COMT Val158 Met and APOE genotypes using real time polymerase chain reaction (rtPCR) and polymerase chain reaction (PCR), and restriction fragment length polymorphism (RFLPs), respectively. Multinomial logistic regression models were used to determine the risk of AD and MCI.

Results

Neither COMT alleles nor genotypes were independent risk factors for AD or MCI. The high activity genotypes (GG and AG) showed a synergistic effect with APOE ε4 allele, increasing the risk of AD (OR = 5.96, 95%CI 2.74-12.94, p < 0.001 and OR = 6.71, 95%CI 3.36-13.41, p < 0.001 respectivily). In AD patients this effect was greater in women. In MCI patients such as synergistic effect was only found between AG and APOE ε4 allele (OR = 3.21 95%CI 1.56-6.63, p = 0.02) and was greater in men (OR = 5.88 95%CI 1.69-20.42, p < 0.01).

Conclusion

COMT (Val158 Met) polymorphism is not an independent risk factor for AD or MCI, but shows a synergistic effect with APOE ε4 allele that proves greater in women with AD.  相似文献   

20.

Background  

Apolipoprotein-E (apoE) plays important roles in neurobiology and the apoE4 isoform increases risk for Alzheimer's disease (AD). ApoE3 and apoE2 are known to form disulphide-linked dimers in plasma and cerebrospinal fluid whereas apoE4 cannot form these dimers as it lacks a cysteine residue. Previous in vitro research indicates dimerisation of apoE3 has a significant impact on its functions related to cholesterol homeostasis and amyloid-beta peptide degradation. The possible occurrence of apoE dimers in cortical tissues has not been examined and was therefore assessed. Human frontal cortex and hippocampus from control and AD post-mortem samples were homogenised and analysed for apoE by western blotting under both reducing and non-reducing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号