首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
不锈钢(AISI 316L)是目前在医药器械中应用最为广泛的商业化材料. 下一代的不锈钢智能材料将特殊功能的生物活性分子(或纳米粒子)修饰在金属表面以模拟组织功能、提高生物/细胞相容性, 这是目前材料科学研究的热点领域之一. 本文研究了具有微纳米多孔表面结构的316L 不锈钢对抗体和生物酶分子的吸附作用,并与这些生物分子在光滑表面以及镀金表面的吸附进行了比较. 研究发现不锈钢可通过简单的电化学腐蚀方法在表面产生微纳米多孔结构. 微纳米孔不锈钢表面可稳定地吸附抗体或辣根过氧化物酶分子, 其吸附量与喷镀金表面相当或更好. 用表面活性剂(10%牛血清白蛋白(BSA)或0.2% Tween-20)洗涤不能除去吸附的蛋白.用5% Tween-20 预处理金属表面, 则可减少一半的抗体吸附量; 但表面活性剂预处理对辣根过氧化物酶的吸附没有影响. 吸附蛋白质后的金属表面湿润度大大增加; 蛋白质修饰的微纳米孔不锈钢表面表现出了很好的亲水性(水接触角小于50°), 指示了很好的生物相容性. 而金属表面的湿润度则主要取决于蛋白质物种, 并与蛋白质的吸附量正相关. 吸附于不锈钢微纳米孔表面的抗体仍保持了良好的生物活性; 用此种方式制备的抗CD34抗体修饰的不锈钢血管支架可以高密度并高选择性地吸附其目标细胞(如KG-1细胞). 本文工作为未来制备新型的无高聚物涂层的不锈钢智能医学生物材料提供了基础.  相似文献   

2.
采用探测室可转动的分子束实验装置,研究了氯分子束与GaAs(100)表面热反应和紫外激光诱导反应的动力学.结果表明,热反应的主要产物为GaCl~3, 其角分布可用cos^2^.^3θ函数拟合.对于紫外(355nm)激光诱导反应,由角分辨的飞行时间(TOF)法测得主要产物为GaCl等,它们的通量角分布须用双余弦加和公式(c~1cosθ+c~2cos^nθ)拟合,表示产物粒子在表面法线方向明显聚集,而且由TOF 谱求得粒子的动能在表面法线方向最大. 这种明显的聚集现象可以由激光诱导的粒子在表面附近发生碰撞效应来解释  相似文献   

3.
一种新型表面增强拉曼活性基底的制备方法   总被引:5,自引:0,他引:5  
表面增强拉曼光谱技术 (SERS)具有极高的灵敏度 ,对某些分子其灵敏度比常规拉曼光谱高一百万倍 ,能检测吸附在金属表面的单分子层和亚单分子层的分子 ,并提供丰富的分子结构信息 [1~ 5] .活性基底的制备是获得 SERS信号的前提 ,电化学粗糙化的电极、贵金属溶胶及真空蒸镀的金属岛膜是SERS分析中最常用的 3种活性基底 ,在实际应用中各有利弊 .本文报道一种新的制备银纳米粒子基底的方法 ,可使银纳米粒子生长到合适的尺寸 ,以达到最佳SERS增强效果 .利用紫外 -可见光谱和 AFM研究该 SERS基底纳米粒子的尺寸分布和形貌 ,以 1 ,4-(双…  相似文献   

4.
当高剥离态离子接近清洁金属表面时,表面上的电子由于强库仑相互作用会从金属表面转移到带有高电荷的离子上.这个电子转移过程可以用一速率方程确定,其中速率常数与高剥离态离子所带净电荷数,以及离子与金属表面的距离有关.由于金属表面的镜象势的作用,高剥离态离子在金属表面附近会受到加速作用而获得能量.本文采用经典镜象势,用数值方法处理了确定电子转移的速率方程,计算了高剥离态离子在金属表面的能量获得,计算结果与两组实验数据比较吻合.  相似文献   

5.
研究金属表面上吸附分子的取向和结构以及利用吸附分子探测金属表面状态是近十几年来催化化学和表面科学中很重要的课题。随着  相似文献   

6.
半导体超微粒子与有机分子界面的光致电行转移过程是当前光化学和材料科学研究的一个活跃领域[‘,2];研究的目的主要有两个方面,一是研究半导体超微粒子表面光致电行转移的特性;二是研究有机分子对超微粒子的光敏化作用.目前,超微粒子的功能化研究日益深入,其独特的光  相似文献   

7.
采用角分辨分子束散射技术研究了Cl_2与InP(100)表面热反应和激光诱导反应产物的角分布. 对于热反应, 由调制分子束和可转动四极质谱仪测得产物离子InCl~+、InCl_2~+、PCl~+、PCl_2~+和P_4~+的角分布, 都可用cos~(1.5)θ函数报合. 对于紫外(355 nm)激光诱导反应, 由飞行时间质谱法测得主要产物离子的角分布明显地偏离Knudsen定律. 其中In~+, InCl~+和InCl_2~+的角分布可用α·cosθ+(1-α)cos~nθ函数拟合, 其中α和n为拟合参数, 对于不同的产物离子有不同的数值. 由实验测得的脱附粒子的通量和能量在表面法线方向有明显地聚集现象, 可以认为产物从表面上脱附的机理, 除了热脱附之外, 还有非热脱附以及在表面附近脱附粒子的碰撞效应.  相似文献   

8.
以硼酸基功能化的磁性Fe3O4纳米粒子(Fe3O4NPs)为载体,卵清蛋白(OB,一种糖蛋白)作模板分子,多巴胺(DA)为单体,采用表面印迹的方法,制备了一种磁性表面分子印迹聚合物纳米粒子。用平衡吸附实验研究了其吸附性能和识别选择性。结果表明,该分子印迹聚合物对目标糖蛋白(OB)具有较高的选择性和吸附量,并且具有良好的磁性,有利于进行快捷的磁性分离,这将为复杂生物样品中目标糖蛋白的专一性识别提供一种新的途径。  相似文献   

9.
本文用Li7(4,3)-H和Li9(5,4)-H小原子簇模拟氢原子在平坦金属锂(100)面吸附体系, 取小基组作了各吸附位吸附势能曲线及相应分子轨道能级图、吸附和表面扩散势能面的ab initio研究。结果表明, 氢原子优先吸附在配位数较高的吸附位上, 并倾向于由高配位数吸附位向低配位数吸附位迁移, 表面扩散各向异性, 扩散跳跃步长与锂单晶晶格原子间距数量级相同。从吸附和表面扩散势能确定了最低能量表面扩散途径, 分析了原子在平坦金属表面上迁移的微观过程。  相似文献   

10.
Au@SiO2核壳纳米粒子的制备及其表面增强拉曼光谱   总被引:2,自引:0,他引:2  
采用柠檬酸钠还原氯金酸法制备金溶胶, 以正硅酸乙酯(TEOS)为硅源, 氨水作催化剂, 制备以金为核, 二氧化硅为壳的核壳纳米粒子. 金纳米粒子的粒径可以通过柠檬酸钠和氯金酸的比例控制, 通过调节TEOS的量和反应的时间可以控制二氧化硅壳层的厚度. 以苯硫酚为探针分子研究了核壳结构纳米粒子的表面增强拉曼散射(SERS)效应与二氧化硅壳层厚度之间的关系. 研究结果表明, 金内核电磁场增强效应随着二氧化硅壳层厚度的增加逐渐减弱, 且其衰减速度比具有相同尺度的双金属核壳结构纳米粒子的慢. 此外, 探针分子主要以物理作用吸附在二氧化硅的表面, 可通过洗涤方法将探针分子除去, 从而可使该复合结构基底用于循环SERS分析.  相似文献   

11.
采用化学沉积法制备了表面增强拉曼散射光谱(SERS)银镜基底,用NaCl溶液与HCl溶液除去银镜表面杂质后,通过扫描电子显微镜对基底进行了表征,表明该基底表面的银纳米粒子平均粒径约为200 nm,以对巯基苯胺为探针分子测得其增强因子为4.6×105.利用表面增强拉曼光谱及表面吸附选择定律研究了广谱抗菌药呋喃唑酮在该基底表面的吸附状态,证明呋喃唑酮分子主要是通过CN吸附于银纳米粒子表面的.  相似文献   

12.
朝晖   《物理化学学报》2016,32(4):811-811
正北京大学郑俊荣教授与厦门大学郑南峰教授等合作,利用时间分辨多维振动光谱技术,深入系统地研究了金属纳米粒子表面吸附分子体系的能量转移超快动力学过程。他们的研究发现,当吸附在金属纳米粒子(Pt和Pb)表面的一氧化碳分子被激发到振动激发态后,CO分子会很快弛豫回基态,同时通过电子-空穴对的激发把能量传递给纳米粒子。当纳米粒子的直径从2 nm缩小到1 nm时,这一过程的速率变慢了20倍!而且CO分子吸  相似文献   

13.
基于金纳米粒子的QCM实时检测DNA错配的研究   总被引:2,自引:0,他引:2  
利用石英晶体微天平(QCM)技术,用双硫醇分子作为连接剂,将金纳米粒子固定于金电极表面,以人类p53基因片断为DNA探针,研究了其在QCM金电极表面的固定、杂交和错配,重点探讨了金纳米粒子修饰的DNA错配碱基个数和错配位点对杂交的影响。在实验条件下,金纳米粒子在QCM金电极表面的修饰使其灵敏度得到了明显提高;而且,错配碱基个数和错配碱基位点的差异都对杂交产生了不同程度的影响。  相似文献   

14.
通过选择沉积电位、温度、电解液浓度等条件,调控银粒子的成核和生长速度,调控晶面的择优取向,诱导枝状生长,从而制得巢状微结构银粒子,并对其生长机理进行了研究.采用扫描电子显微镜(SEM)和X射线衍射光谱(XRD)对巢状微结构银粒子形貌和结构进行表征.以罗丹明6G为探针分子,研究了巢状微结构银粒子的表面增强拉曼光谱(SERS),并与无孔银粒子对照.结果表明:巢状微结构银粒子的SERS较无孔银粒子有明显增强,拉曼增强因子达到1.7×106.  相似文献   

15.
用MS、 FT-IR等方法对合成的三正丁基一硫代及四硫代磷酸酯进行了结构表征,并在四球摩擦磨损试验机上考察了其在液体石蜡中的摩擦学性能;用扫描电镜(SEM)和X射线光电子能谱(XPS)对钢球磨痕表面做了分析.结果表明: 对于钢-钢摩擦副,合成的两种硫代磷酸酯可以显著提高液体石蜡的极压抗磨性能,但不能改善其减摩性能.钢球磨损表面XPS和SEM分析结果表明,添加剂分子在金属表面发生物理或化学吸附,并导致金属表面的腐蚀和摩擦化学反应.  相似文献   

16.
用一种简单的化学还原方法制备了银纳米粒子包覆的氧化亚铜(Cu2O)纳米复合物。扫描电子显微镜显示Cu2O 为八面体型的纳米粒子,表面光滑,结构对称。包覆的Ag部分占据Cu2O粒子表面。通过比较Ag/Cu2O纳米复合物、Ag溶胶及Cu纳米粒子表面吸附的4-巯基吡啶(4-Mpy)分子表面增强拉曼光谱(SERS)发现,利用此方法得到了Cu2O粒子表面吸附分子的拉曼光谱。银纳米粒子所产生的电磁场增强又增强了吸附在Cu2O上的4-Mpy拉曼信号。这种方法为初步研究Cu2O表面吸附分子性质提供了依据,扩宽了SERS的使用范围,使SERS应用在纳米半导体材料上成为可能。  相似文献   

17.
氢分子在金属表面的解离吸附与氢原子在金属体相的扩散是个典型的表面过程.前者在甲烷化及合成氨等基础化工反应中起着关键作用;后者常常导致金属材料的脆化与断裂,但过渡金属及其合金是安全和优良的储氢材料.因此,研究氢分子在金属表面的解离吸附与氢原子在金属体相的扩散,是多相催化与金属物理广泛感兴趣的课题,具有重要的理论和应用价值.本文采用分子动力学方法初步探讨了二者之间的关联.分子催化动力学为从微观层次上研究上述课题提供了一种理论方法.本文采用经过我们改进的半经验LEPS方法,计算了氢分子在Pd(100)和(110)晶面的解离和氢原子在钯表面与体相扩散的相互作用位能面,并根据计算结果探讨了其微观机理.  相似文献   

18.
硫脲自盐酸溶液中在低碳钢表面的吸附特性   总被引:3,自引:0,他引:3  
用失重法研究硫脲对低碳钢表面在盐酸溶液中的吸附特性及缓蚀作用.应用吸附理论和Frumkin等温式及Flory-Huggins等温式处理实验数据,发现低浓度的硫脲自2mol·L-1盐酸中在低碳钢表面上产生的吸附过程是一个取代吸附过程,而且是一个熵增过程.尤其应该注意侧向作用力和被吸附的硫脲分子所代替的水分子数,其表面覆盖度随温度和浓度的增大而增大,并认为这种吸附是产生缓蚀作用的重要原因.实验结果还表明在30℃时,吸附过程中侧向作用力影响较大,并遵循Frumkin等温式,其吸附分子垂直地吸附在金属表面;在35℃-50℃时,吸附分子在金属表面水平吸附,其侧向作用力可忽略,遵循Flory-Huggins等温式.根据这些结果计算出吸附自由能、吸附焓、吸附熵,说明表面覆盖度中温度的影响起因于吸附熵的变化.  相似文献   

19.
表面辅助的金属有机纳米结构因其结构稳定性和潜在应用受到广泛关注。在金属有机纳米结构中,金属原子来源于外部沉积的金属或金属表面原子。外部沉积的金属原子种类多样,取决于目标纳米结构。然而,金属表面原子受限于表面科学常用的金、银和铜单晶金属表面。金属有机纳米结构大多包括Au配位或是Cu配位结构,而只有少量的用表面Ag原子构成。分子金属相互作用的进一步研究有助于预期纳米结构的精确控制形成。至于构建基元,有机分子通过M―C、M―N和M―O键与表面金属原子配位。末端炔反应或者乌尔曼耦合能够实现C―M―C节点的形成。Cu和Au原子能够与含有末端氰基或吡啶基官能团的分子配位形成N―M―N键。另外,表面Ag增原子能够通过Ag―N配位键与酞菁分子配位。然而,M―O配位键的相关研究较少。因此,我们计划使用末端羟基分子与Ag增原子配位形成金属有机配位纳米结构去研究O―Ag节点。我们通过扫描隧道显微镜利用4, 4’-二羟基-1, 1’: 3’, 1’’-三联苯分子(4, 4’-dihydroxy-1, 1’: 3’, 1’’-terphenyl,H3PH)和Ag增原子成功构筑了一系列二维有序纳米结构。在室温下,蒸镀的H3PH分子自组装形成由环氢键连接的密堆积结构。当退火温度提升到330 K,一种新的纳米结构出现了,该结构由O―Ag配位键和氢键共同作用形成。进一步地提升退火温度至420 K,蜂巢结构和共存的二重配位链出现,这两种结构中仅由O―Ag―O键构成。为分析金属分子反应路径和O―Ag―O键的能量势垒,我们对该体系进行密度泛函理论计算。计算结果显示,O―Ag键形成的能量势垒是1.41 eV,小于O―Ag―O节点1.85 eV的能量势垒。这也解释了分等级金属-有机纳米结构形成的原因。我们的实验结果提供了一种利用有机小分子和金属增原子来设计和构筑分等级二维纳米结构的有效方法。  相似文献   

20.
通过置换反应在金属铝表面制备了表面没有任何保护剂且具有红外增强作用的钴岛膜,用SEM、XRD和表面增强红外光谱对其形貌和性质进行表征。 结果表明,铝片上沉积出的钴呈岛状结构,钴岛膜由二次钴粒子和一次钴粒子通过密堆积的方式构成;首次发现具有这种特殊结构的钴对吸附于其表面的有机分子的红外吸收光谱有较大的增强作用,用此钴岛膜对1 mmol/L的对巯基苯甲酸的红外光谱研究时得到很好的红外增强信号,使得表面增强红外光谱可以用于痕量分析、检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号