首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
电场对(4, 0)Zigzag模型单壁碳纳米管的影响   总被引:1,自引:0,他引:1  
The structural and electronic properties of a (4, 0) zigzag single-walled carbon nanotube (SWCNT) under parallel and transverse electric fields with strengths of 0-1.4×10~(-2) a.u. Were studied using the density functional theory (DFT) B3LYP/6-31G~* method. Results show that the properties of the SWCNT are dependent on the external electric field. The applied external electric field strongly affects the molecular dipole moments. The induced dipole moments increase linearly with increase in the electrical field intensities. This study shows that the application of parallel and transverse electric fields results in changes in the occupied and virtual molecular orbitals (Mos) but the energy gap between the highest occupied MO (HOMO) and the lowest unoccupied MO (LUMO) of this SWCNT is less sensitive to the electric field strength. The electronic spatial extent (ESE) and length of the SWCNT show small changes over the entire range of the applied electric field strengths. The natural bond orbital (NBO) electric charges on the atoms of the SWCNT show that increase in the external electric field strength increases the separation of the center of the positive and negative electric charges of the carbon nanotube.  相似文献   

2.
Structural and electrical responses of the (4,0) zigzag model of single-walled boron nitride (BN) nanotube (NT) (with edges terminated by H atoms) have been investigated under the external electric fields (parallel and transverse) with strengths 0−2.0 × 10−2 a.u. using DFT-B3LYP/6-31G* method. Calculated electric dipole moment shows a significant change in the presence of the parallel and perpendicular external electric fields which result in much stronger interactions at higher electric field strengths. Natural bond orbital (NBO) atomic charges analysis shows that the separation of the center of the positive and the center of the negative electric charges of (4,0) zigzag BNNT increase with increase the applied parallel and transverse electric field strengths. The applied fields change the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and decrease the HOMO–LUMO gap (HLG) values. The calculated electronic spatial extent (ESE) showed small changes of <0.63% and <1.53% over the entire range of the applied parallel and perpendicular electric field strengths, respectively. Results of this study indicate that the properties of BNNTs can be controlled by applying the proper external electric field. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
In this study, an organic conjugated molecule, 4,4′-[ethane-1,2-diylidenedi(nitrilo)] dibenzenthiol designed and is proposed as a molecular wire. Structural and electronic responses of this aromatic molecular wire to the static electric field with intensities −1.6 × 10−2 to +1.6 × 10−2 a.u., are studied using the DFT-B3LYP/6-31G* level of theory. Natural bond orbital atomic charge analysis shows that the imposition of static external electric field induces polarization—localization of charge on the two ends of molecule, especially on considered terminal contact sulfur atoms. The frontier molecular orbitals (MOs) energy levels including the highest occupied MO (HOMO) and the lowest unoccupied MO (LUMO) and the HOMO–LUMO gap (HLG) values are modified by the static electric field as well. The electric dipole moment and polarizability of the proposed molecular wire under the studied electric field strengths are considerably increased. The current–voltage characteristic curve is estimated for the proposed molecular wire.  相似文献   

4.
Structural, electronic, and electrical responses of the H-capped (6,0) zigzag single-walled silicon carbide nanotube (SiCNT) was studied under the parallel and transverse electric fields with strengths 0–140 × 10?4 a.u. by using density functional calculations. Analysis of the structural parameters indicates that resistance of the nanotube against the applied parallel electric field is more than resistance of the nanotube against the applied transverse electric field. The dipole moments, atomic charge variations, and total energy of the (6,0) zigzag SiCNT show increases with any increase in the applied external electric field strengths. The length, tip diameters, electronic spatial extent, and molecular volume of the nanotube do not change significantly with any increasing in the electric field strength. The energy gap of the nanotube increases with any increases in the electric field strength and its reactivity is decreased. Increase of the ionization potential, electron affinity, chemical potential, and HOMO and LOMO in the nanotube with increase of the applied external electric field strengths indicates that the properties of SiCNTs can be controlled by the proper external electric field for use in nano-electronic circuits.  相似文献   

5.
Using single molecule polarization spectroscopy, we investigated the alignment of a polymer solute with respect to the liquid crystal (LC) director in an LC device while applying an external electric field. The polymer solute is poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (or MEH-PPV), and the LC solvent is 5CB. The electric field induces a change in the LC director orientation from a planar alignment (no electric field) to a perpendicular (homeotropic) alignment with an applied field of 5.5 x 103 V/cm. We find that the polymer chains align with the LC director in both planar and homeotropic alignment when measured in the bulk of the LC solution away from the device interface. Single molecule polarization distributions measured as a function of distance from the LC device interface reveal a continuous change of the MEH-PPV alignment from planar to homeotropic. The observed polarization distributions are modeled using a conventional elastic model that predicts the depth profile of the LC director orientation for the applied electric field. The excellent agreement between experiment and simulations shows that the alignment of MEH-PPV follows the LC director throughout the LC sample. Furthermore, our results suggest that conjugated polymers such as MEH-PPV can be used as sensitive local probes to explore complex (and unknown) structures in anisotropic media.  相似文献   

6.
The ground states of dimethyl siloxane under different intense electric fields ranging from - 0. 04 to 0. 04 a. u. are optimized using density functional theory DFT / B3P86 at 6-311 ++ G(d,p)level. The excitation energies and oscillator strengths under the same intense applied electric fields are calculated employing the revised hybrid CIS-DFT method. The result shows that the electronic state,molecular geometry,total energy,dipole moment and excitation energy are strongly dependent on the field strength and behave asymmetry to the direction of the applied electric field. As the electric field changes from - 0. 04 to 0. 04 a. u. ,the bond length of Si-O increases whereas the bond length of Si-C decreases because of the charge transfer induced by the applied electric field. The dipole moment of the ground state decreases linearly with the applied field strength. However,the dipole moment of molecule changes from positive to negative as the inverse electric field increase to - 0. 03 a. u. Further increase of the inverse electric field results in an increase of the total energy of the molecule. The dependence of the calculated excitation energies on the applied electric field strength is fitting well to the relationship proposed by Grozema. The excitation energies of the first five excited states of dimethyl siloxane decrease as the applied electric filed increases because the energy gap between the HOMO and LUMO become close with the field,which shows that the molecule is easy to be excited under electric field and hence can be easily dissociated.  相似文献   

7.
采用密度泛函B3P86方法在6-311++G(d, p)基组水平上优化得到了沿分子轴方向不同外电场(0-0.04 a.u.)作用下, 甲基乙烯基硅酮分子的基态电子状态、几何结构、电偶极矩和分子总能量. 在优化构型下利用杂化CIS-DFT方法(CIS-B3P86)研究了同样外电场条件下对甲基乙烯基硅酮的激发能和振子强度的影响. 计算结果表明, 分子几何构型与电场大小呈现强烈的依赖关系, 分子偶极矩μ随电场的增加先减小后急剧增大. 电场为零时, 分子总能量为-483.5532137 a.u., 随着电场增加, 能量升高, 在F=0.02 a.u.时达到最大值-483.5393952 a.u., 此后, 继续增大电场系统总能量则开始降低. 激发能随电场增加急剧减小, 表明在电场作用下, 分子易于激发和离解.  相似文献   

8.
Three medium-size optically active molecules have been studied to make a guess at candidates suitable for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. The criterion for experimental detection is given by the magnitude of the isotropic part of nuclear magnetic shielding polarisability tensors, related to a pseudoscalar of opposite sign for the two enantiomers. The pseudoscalar shielding polarisability at the (17)O nucleus in N-methyloxaziridine, calculated at the Hartree-Fock level, is approximately 7.8 x10(-)(17) mV(-)(1). To obtain an experimentally observable magnetic field induced at the (17)O nucleus in N-methyloxaziridine, electric fields as large as approximately 10(7) - 10(8) Vm(-)(1) should be applied to the probe. The molecular electric dipole moment induced by precession of the magnetic dipole of the (17)O nucleus in a magnetic field of 10 T is, in absolute value, approximately 8.8 x 10(-)(42) Cm. The estimated rf-voltage at a resonance circuit is approximately 10 nV. Smaller values have been estimated for N, C, and H nuclei in 1,3-dimethylallene and 2-methyloxirane.  相似文献   

9.
The switching behaviour of 1,3,6,8-tetrakis-((S)-2-(heptyloxy)propanoyloxy)pyrene was studied near room temperature in a monotropic columnar phase. The switching angle (optical tilt angle) increases linearly with the applied electric field from 0° to c. ± 10° at ± 0.35°/(V μm -1), then rapidly increases to its upper limit of 22°. The electric polarization is roughly proportional to the switching angle with a maximum value of 110nC cm-2 at high field strengths. At field strengths up to 10 V μm-1, a voltage and temperature independent 0 to 90 per cent switching time of c. 650 μs was measured. The observations are explained in terms of deformation and unwinding of an intracolumnar helix.  相似文献   

10.
11.
外电场下氮化铝分子结构和光谱研究   总被引:9,自引:0,他引:9  
黄多辉  王藩侯  朱正和 《化学学报》2008,66(13):1599-1603
以6-311+G(2DF)为基函数, 采用密度泛函B3P86的方法研究了外电场作用下氮化铝(AlN)基态分子的几何结构、HOMO能级、LUMO能级、能隙及谐振频率. 结果表明, 外电场的大小和方向对AlN分子基态的这些性质有明显影响. 在所加的电场范围内, 随着外电场的增大分子键长减小, 谐振频率增大, 总能量升高, 在F=0.02 a.u.时能量达到最大, 为-297.4217 a.u., 此后继续增大电场强度, 系统总能量则开始降低; EH 和EL 随着电场的增加均逐渐增大, 在 F=0.01 a.u.时, EH 和EL均取得最大值, 分别为-0.2776和-0.0828 a.u., 随着电场的继续增大, 能级EH和EL均逐渐减小, 而能隙在外电场增大的过程中始终处于减小趋势.  相似文献   

12.
By the molecular mechanics/quantum mechanics method, the geometry distortion and configuration invalidity of dimmer C60fullerene (2C60) molecule in external electric field are simulated. The effect of the electric field, with three different directions, on geometry distortion, configuration invalidity, polarization charge distribution and dipole moment for 2C60 molecule is discussed systemtically. Further the geometry distortion and invalidity of 2C60 molecule are respectively compared with those of C60 fullerene molecule in electric field. By comparison, it is shown that geometry distortion and configuration invalidity behavior of 2C60 molecule are sensitive to the direction of electric field, when the directions of the applied electric field are parallel to the bridged C-C bonds. For 2C60molecule it is very easy for the configuration of 2C60 molecule to be invalidated and the invalidity mode is very particular as well.  相似文献   

13.
The effects of electric field on the phase behaviors of water encapsulated in a thick single-walled carbon nanotube (SWCNT) (diameter = 1.2 nm) have been studied by performing extensive molecular dynamics simulations at atmospheric pressure. We found that liquid water can freeze continuously into either pentagonal or helical solidlike ice nanotube in SWCNT, depending on the strengths of the external electric field applied along the tube axis. Remarkably, the helical one is new ice phase which was not observed previously in the same size of SWCNT in the absence of electric field. Furthermore, a discontinuous solid-solid phase transition is observed between pentagonal and helical ice nanotubes as the strengths of the external electric field changes. The mechanism of electric-field-induced phase transition is discussed. The dependence of ice structures on the chiralities of SWCNTs is also investigated. Finally, we present a phase diagram of confined water in the electric field-temperature plane.  相似文献   

14.
WH Henley  JM Ramsey 《Electrophoresis》2012,33(17):2718-2724
New instrumentation has been developed to improve the resolution, efficiency, and speed of microfluidic 2D separations using MEKC coupled to high field strength CE. Previously published 2D separation instrumentation [Ramsey, J. D. et al., Anal. Chem. 2003, 75, 3758-3764] from our group was limited to a maximum potential difference of 8.4 kV, resulting in an electric field strength of only approximately 200 V/cm in the first dimension. The circuit described in this report has been designed to couple a higher voltage supply with a rapidly switching, lower voltage supply to utilize the best features of each. Voltages applied in excess of 20 kV lead to high electric field strength separations in both dimensions, increasing the separation resolution, efficiency, and peak capacity while reducing the required analysis time. Detection rates as high as six peptides per second (based on total analysis time) were observed for a model protein tryptic digest separation. Additionally, higher applied voltages used in conjunction with microfluidic chips with longer length channels maintained higher electric field strengths and produced peak capacities of over 4000 for some separations. Total separation time in these longer channel devices was comparable to that obtained in short channels at low field strength; however, resolving power improved approximately threefold.  相似文献   

15.
This paper describes an electron dynamics method where the time dependence of an external oscillating electric field is the perturbing part of the Hamiltonian. Application of the electric field induces charge movement inside the molecule and electronic transitions between the molecular orbitals. The test system is the neutral LiH molecule. The method is applied to wave functions calculated using the B3LYP (hybrid) density functional, with the STO-3G and the 6-31+G basis sets. The molecule undergoes full population inversion between the HOMO and the LUMO when the electric field is in resonance with the HOMO-LUMO energy gap. The magnitude of the electric field directly affects the rate at which electronic transitions occur and the rate at which charges move between lithium and hydrogen atoms. The method is used to model both monochromatic and bichromatic multiphoton effects in LiH. Monochromatic one-, two- and three-photon transitions occur between the HOMO, LUMO and two other virtual orbitals. There is evidence of both [1+2] direct and [1+1+1] stepwise multiphoton transitions. Bichromatically, two "laser" pulses are applied at different frequencies. Electronic transitions can be fine-tuned to occur via pre-specified pathways of virtual molecular orbitals.  相似文献   

16.
The behavior of the electronic structure in a metal/molecular/metal junction as a function of the applied electric field is studied using density functional methods. Although the calculations reported here do not include the electrode bulk, or intermolecular interactions, and do not permit actual transport to occur, nevertheless they illuminate the charging, energy shift, polarization and orbital occupation changes in the molecular junction upon the application of a static electric field. Specifically, external electric fields generally induce polarization localization on the two cluster ends. The HOMO/LUMO gap usually decreases and, for large enough fields, energy levels can cross, which presages a change of electronic state and, if found in molecular electronic circuits, a change in transmission. The calculations also show changes in the geometry both of the molecule and the molecule/cluster interface upon application of the electric field. These effects should be anticipated in whole circuit studies.  相似文献   

17.
Time-resolved charge recombination has been measured by reflectance/absorption spectroscopic analysis of Langmuir-Blodgett films of reaction centers of the photosynthetic bacterium, Rhodopseudomonas sphaeroides over a wide range of applied electric field strengths. The field dependence of the recombination kinetics has been deduced from the time-course of the reduction of the flash-oxidized bacteriochlorophyll dimer [(BChl)+2] recorded at different applied field strengths. Measurements were performed under two different electric field biasing conditions: a constant bias and a high-frequency bipolar square-wave bias. The additional data obtained from bipolar biasing enabled the use of a new deconvolution method to obtain the field dependence of the rate constants from the experimental curves. The deconvolution shows that the rates for charge recombination from the flash-generated state back to the ground state (BChl)2QA approximate exponential functions of the applied electric field. Correlation of the recombination kinetics data with photoinduced electrical response measurements on films with asymmetric up and down populations of reaction centers reveals that fields opposing charge separation result in faster rates of recombination. Although other possibilities are considered, the main source of the effect is believed to be a result of field-induced changes in the free energy gap between and (BChl)2QA. The results presented here are compared to those obtained in experiments with solubilized reaction centers in which the free energy gap between and (BChl)2QA has been changed by quinone replacement.  相似文献   

18.
19.
The static deformations and vibrations of the title compounds with an applied static electric field have been studied by density functional theory calculations. It is found that for diatomic molecules, bond length and vibrational frequency as a function of the field can be fit very well all the way up to the dissociation limit by an analytical formula derived from a Morse potential model including an additional external field term. Polyatomic molecules show more complex behaviour with a single mode becoming soft at the dissociation limit. The frequency of the soft mode near the critical field is again described well by the analytical model. The vibrational analysis shows that in polyatomic molecules dissociation proceeds as a heterolytic fragmentation process, which can break the symmetry of the molecule in the applied field.  相似文献   

20.
Disulfur dichloride is a hazardous substance, which is irritating to the eyes. It is significant to study the physical and dissociation properties under external electric fields. The bond length, energy, dipole moment, orbital energy level distribution, infrared spectra and dissociation properties of disulfur dichloride molecule under different external fields are obtained by using the density functional theory at the B3LYP/6-311++G(d, p) basis set level. In addition, ultraviolet-visible absorption spectra of the molecule in different electric fields are studied with configuration interaction-single excitation(CIS)/6-311++G(d, p) method. According to the results, it has been found that as the electric field exerted along the positive direction of the z-axis increases, the two sulfur-chlorine(S-Cl) bond lengths become longer and tend to break, while the sulfur-sulfur(S-S) bond length becomes shorter and the energy gap decreases. The infrared spectrum and ultraviolet-visible absorption spectra both exhibit red shift under electric field. Moreover, by scanning the potential energy surface of disulfur dichloride about S-Cl bond, the dissociation barrier decreases with the increase of positive electric field. When the external electric field arrives at 0.040 atomic units, the barrier disappears, meaning the dissociation of disulfur dichloride. The present results offer an important reference to further study of disulfur dichloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号