首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum nanoparticle core-polyaryl ether trisacetic acid ammonium chloride dendrimer shell nanocomposites (Pt@Gn-NACl) were prepared and used as catalysts for hydrogenation of nitrobenzenes to anilines with molecular hydrogen under mild conditions. The as-prepared nanoparticles have mean particle size from 2.0 to 5.5 nm, depending on the molar ratio of the metal and the dendrimer. The Pt nanoparticles demonstrate near-monodisperse when the molar ratio of Pt and G3-NACl is below 30. The interaction among three carboxyl groups terminated at the dendron and the metallic core keeps the Pt nanoparticles from agglomerating. The colloidal solution of Pt nanoparticles stabilized by the dendrimer, in which the molar ratio of Pt/G3-NACl was less than 60, is stable without precipitation for several weeks. The dendrons attach to the metal core radially, and a substantial fraction of the surface of the metal nanoparticle is unpassivated and available for catalytic reactions. Turnover frequencies for the hydrogenation of nitrobenzenes to anilines change from 353 to 49 h−1 depending on the dendrimer generation and substrates. The dendrimer catalysts are stable during the catalytic hydrogenation process and can be recovered by centrifugation and reused. The results suggest the effectiveness of polyaryl ether trisacetic acid ammonium chloride dendrimer as a stabilizer for the preparation of Pt nanoparticle catalysts.  相似文献   

2.
Hollow silica microspheres encapsulating ferromagnetic iron oxide nanoparticles were synthesized by a surfactant-aided aerosol process and subsequent treatment. The cationic surfactant cetyltrimethyl ammonium bromide (CTAB) played an essential role in directing the structure of the composite. Translation from mesoporous silica particles to hollow particles was a consequence of increased loading of ferric species in the precursor solution and the competitive partitioning of CTAB between silicate and ferric colloids. The hypothesis was that CTAB preferentially adsorbed onto more positively charged ferric colloids under acidic conditions. At a critical Fe/Si ratio, most of the CTAB was adsorbed onto ferric colloids and coagulated the colloids to form larger clusters. During the aerosol process, a silica shell was first formed due to the preferred silicate condensation on the gas-liquid interface of the aerosol droplet. Subsequent drying concentrated the ferric clusters inside the silica shell and resulted in a silica shell/ferric core particle. Thermal treatment of the core shell particle led to encapsulation of a single iron oxide nanoparticle inside each silica hollow microsphere.  相似文献   

3.
We have successfully incorporated iron oxide nanoparticles into monodispersed amorphous selenium (a-Se) colloids by regulating the reaction temperature during the synthesis of a-Se. The surfaces of these a-Se colloids could be coated with conformal and smooth shells made of Pt and SiO2. The Se cores could then be removed by etching with hydrazine. The spherical morphology and superparamagnetism were maintained in all these synthetic steps. The presence of Pt and SiO2 on the outer surfaces of these colloidal particles allows one to control their surface functionalities through the formation of alkanethiolate and siloxane monolayers, respectively.  相似文献   

4.
Selective hydrolytic oxidation of organohydrosilanes was achieved with water in the presence of Pt‐nanoparticle catalyst. The selectivity of the process was established by NMR analysis. In addition, various Pt‐based catalysts were screened to compare the activity and selectivity with Pt‐nanoparticles catalysis. The method was equally applicable to hydrosilanes bearing unsaturated functional groups, which led to corresponding silanols under mild reaction conditions without formation of any side products. Pt‐nanoparticle catalysis was studied in details using UV–vis, TEM and mercury poisoning experiments during the transformation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
We report on the spontaneous covalent growth of monomolecular adlayers on mixed nickel-zinc nanoferrite colloidal suspensions (ferrofluids). Synthesized nanoparticles were subjected to surface modification by means of acid chloride chemistry, leading to the formation of covalent bonds between the hydroxy groups at the nanoparticle surface and the acid chloride molecules. This procedure can be easily tailored to allow for the formation of adlayers containing both hydrophobic and hydrophilic regions stacked at predetermined distances from the magnetic core, and also providing the nanoferrites with functional carboxy groups capable of further modifications with, for example, drug molecules. Here, fluorophore aminopyrene molecules were bound to such modified nanoferrites through amide bonds. We also used the same chemistry to modify the surface with covalently bound long-chain palmitoyl moieties, and for comparison we also modified the nanoferrite surface by simple adsorption of oleic acid. Both procedures made the surface highly hydrophobic. These hydrophobic colloids were subsequently spread on an aqueous surface to form Langmuir monolayers with different characteristics. Moreover, since uniformity of size is crucial in a number of applications, we propose an efficient way of sorting the magnetic nanoparticles by size in their colloidal suspension. The suspension is centrifuged at increasing rotational speed and the fractions are collected after each run. The mean size of nanoferrite in each fraction was measured by the powder X-ray diffraction (PXRD) technique.  相似文献   

6.
A one-pot route was illustrated to synthesize stable well-dispersed silver colloids stabilized by polyacrylamide on a large scale. Reduction of silver ions and polymerization of acrylamide occurred almost simultaneously in the absence of a commonly used reducing agent and initiator. A possible mechanism for the formation of silver nanoparticles with bimodal size distribution was proposed. The structure and composition of the obtained nanoparticles were characterized carefully. Furthermore, light scattering simulation and UV-vis absorption studies confirmed that the obtained colloids were the mixture of Ag and Ag2O nanoparticles. The presence of silver oxide layers on the nanoparticle surface should be responsible for the broadening of the surface plasmon band of silver nanoparticles. Ag2O layers could be added or removed from Ag nanoparticle surfaces by the addition of HNO3, HAc, or NaCl solution to the as-obtained silver colloids.  相似文献   

7.
Interaction of slightly crosslinked hydrogels of poly(diallyldimethylammonium chloride) (PDADMACI) and of copolymer DADMACI/acrylamide (AAm) with sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfate (SDBS) results in significant shrinking of the gels due to the formation of polymer-surfactant complexes. Jump-wise transitions in the collapsed state were observed for the networks with the content of cationic groups 100 and 75 mol %. The structure of complexes was studied by means of X-ray scattering method. The scattering curves for collapsed gels, where most chloride anions were replaced by anions of SDS, show a set of well-pronounced narrow diffraction maxima. Fully charged “wet” complexes studied at the equilibrium swelling conditions exhibit high degree of ordering, which diminishes upon drying with the simultaneous transition from hexagonal to lamellar type of ordering. In contrast to this, for DADMACl/AAm copolymer gels (75 mol % of DADMACl monomers in the initial polymerization mixture) the ordering is less pronounced in the “wet” state and becomes more perfect upon drying. The SDS aqueous solutions of the same concentration in the absence of gel do not show such high degree of ordering, while the system of SDS/neutral AAm gel exhibits lamellar ordering typical for low-temperature phases of SDS solutions. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Pt and Au nanoparticles with controlled Pt?:?Au molar ratios and PtAu nanoparticle loadings were successfully self-assembled onto poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene (PDDA-G) as highly effective electrocatalysts for formic acid oxidation in direct formic acid fuel cells (DFAFCs). The simultaneously assembled Pt and Au nanoparticles on PDDA-G showed superb electrocatalytic activity for HCOOH oxidation, and the current density associated with the preferred dehydrogenation pathway for the direct formation of CO(2) through HCOOH oxidation on a Pt(1)Au(8)/PDDA-G (i.e., a Pt?:?Au ratio of 1?:?8) is 32 times higher than on monometallic Pt/PDDA-G. The main function of the Au in the mixed Pt and Au nanoparticles on PDDA-G is to facilitate the first electron transfer from HCOOH to HCOO(ads) and the effective spillover of HCOO(ads) from Au to Pt nanoparticles, where HCOO(ads) is further oxidized to CO(2). The Pt?:?Au molar ratio and PtAu nanoparticle loading on PDDA-G supports are the two critical factors to achieve excellent electrocatalytic activity of PtAu/PDDA-G catalysts for the HCOOH oxidation reactions.  相似文献   

9.
Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H2PtCl6) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells.  相似文献   

10.
Atomic hydrogen electrosorption is reported at crystallite sites of polyacrylate-capped Pt nanoparticles (d = 2.5 +/- 0.6 nm), by assembling nanostructured electrodes of polyacrylate-Pt nanocrystallites layer-by-layer in a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). Cyclic voltammetry in 1 M H2SO4 revealed a strongly adsorbed hydrogen state and a weakly adsorbed hydrogen state assigned to adsorption at (100) and (110) sites of the modified nanocrystallites, respectively. Resolving hydrogen adsorption states signifies that surface capping by the carboxylate groups is not irreversibly blocking hydrogen adsorption sites at the modified Pt nanoparticle surface. Adsorption peak currents increased with increasing the number of layers up to 16 bilayers, indicating the feasibility of nanoparticle charging via interparticle charge hopping and the accessibility of adsorption states within the thickness of the nanoparticle/polyelectrolyte multilayers. Despite similarity in hydrogen adsorption in the cyclic voltammorgrams in 1 M H2SO4, negative shifts in adsorption potentials were measured at the nanocrystallite Pt-polyelectrolyte multilayers relative to a polycrystalline bulk Pt surface. This potential shift is attributed to a kinetic limitation in the reductive hydrogen adsorption as a result of the Pt nanoparticle surface modification and the polyelectrolyte environment.  相似文献   

11.
Using density functional theory calculations, we have studied the morphology of a Pt37 nanoparticle supported on carbon with and without hydrogen (H) passivation that arises with postprocessing of nanoparticles before characterization. Upon heating in an anneal cycle, we find that without H (e.g., in a helium atmosphere or evacuation at high temperature), the morphology change of a truncated cuboctahedral Pt37 is driven by the shearing of (100) to (111) facets to lower the surface energy, a remnant shear instability that drives surface reconstruction in semi-infinite Pt(100). With H passivation from a postprocessing anneal, we show that the sheared structure automatically reverts to the observed truncated cuboctahedral structure and the average first nearest-neighbor Pt-Pt bond length increases by 3%, agreeing well with experiment. We explain the stabilization of the truncated cuboctahedral structure due to H passivation via adsorption energetics of hydrogen on Pt(100) and (111) facets, specifically, the preference for H adsorption at bridge sites on (100) facets, which should be considered in a realistic model for H adsorption on Pt nanoparticles. We find that dramatic morphological change of a nanoparticle can occur even with small changes to first-shell Pt-Pt coordination number. The implications of our findings when comparing to experimental data are discussed.  相似文献   

12.
Gold nanoparticles were prepared by ethylene glycol (EG) reducing gold chloride under microwave irradiation. The EG-stabilized gold colloids varied from red to blue with increasing amounts of EG, due to particle aggregation. Addition of the macrocyclic polyamine 2,8,14,20-tetranonyl-4,6,10,12,16,18,22,24-octa(1-aminoethylcarbamoyl)methoxyresorcinarene (TNMR) reversed nanoparticle aggregation under microwave irradiation and greatly improved their dispersion stability in aqueous solutions. These effects are likely due to the amphiphilic nature of TNMR, which has a large hydrophilic headgroup with eight amino groups and four hydrophobic chains. Moreover, the large and flexible hydrophilic groups containing more N and O atoms in the TNMR molecule has a strong stretching and penetrating ability in the aqueous solution, and TNMR molecules can easily form a bilayer protecting structure on the surface of gold nanoparticles, which plays a critical role in the color-change process of the EG-stabilized gold colloid.  相似文献   

13.
Microemulsions are effective media for solution-based synthesis of metallic nanoparticles where surfactants and other ionic species influence the directed assembly of the nanomaterials with specific sizes, geometries, and compositions. This study demonstrates the effects of chloride ion on the synthesis of copper nanoparticles within the sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelle system utilizing both liquid isooctane and compressed propane as the bulk solvent. Copper nanoparticle synthesis can be achieved in the presence of HCl in the micelle core, taking advantage of the buffering action of the AOT surfactant. The concentration of chloride ions influence the particle growth rate and dispersion in liquid isooctane. The presence of chloride ions during particle synthesis in compressed propane has a significant effect on the geometry and structure of the copper nanomaterials produced. Chloride ion addition to the compressed propane/Cu(AOT)(2)-AOT/water reverse micelle system at 20 degrees C and 310 bar results in the formation of diamond-shaped copper nanoparticle assemblies. The copper nanoparticle assemblies exhibit unique structure and retain this structure through repeated solvent processing steps, allowing separation and recovery of the assembled diamond-shaped copper nanoparticle structures.  相似文献   

14.
Integral equation theory with a hybrid closure approximation is employed to study the equilibrium structure of highly size asymmetric mixtures of spherical colloids and nanoparticles. Nonequilibrium contact aggregation and bridging gel formation is also qualitatively discussed. The effect of size asymmetry, nanoparticle volume fraction and charge, and the spatial range, strength, and functional form of colloid-nanoparticle and colloid-colloid attractions in determining the potential-of-mean force (PMF) between the large spheres is systematically explored. For hard, neutral particles with weak colloid-nanoparticle attraction qualitatively distinct forms of the PMF are predicted: (i) a contact depletion attraction, (ii) a repulsive form associated with thermodynamically stable "nanoparticle haloing," and (iii) repulsive at contact but with a strong and tight bridging minimum. As the interfacial cohesion strengthens and becomes shorter range the PMF acquires a deep and tight bridging minimum. At sufficiently high nanoparticle volume fractions, a repulsive barrier then emerges which can provide kinetic stabilization. The charging of nanoparticles can greatly reduce the volume fractions where significant changes of the PMF occur. For direct and interfacial van der Waals attractions, the large qualitative consequences of changing the absolute magnitude of nanoparticle and colloid diameters at fixed size asymmetry ratio are also studied. The theoretical results are compared with recent experimental and simulation studies. Calculations of the real and Fourier space mixture structure at nonzero colloid volume fractions reveal complex spatial reorganization of the nanoparticles due to many body correlations.  相似文献   

15.
The assembly and complexation of oppositely charged colloids are important phenomena in many natural and synthetic processes. Liposome-nanoparticle assemblies (LNAs) represent an interesting hybrid system that combines "soft" and "hard" colloidal materials. This work describes the formation and characterization of gel-phase LNAs formed by the binding of anionic superparamagnetic iron oxide (SPIO) nanoparticles to cationic dipalmitoylphosphatidylcholine (DPPC)/dipalmitoyltrimethylammonium propane (DPTAP) liposomes. Particles were examined with hydrodynamic diameters below (16 nm) and above (30 nm) the cutoff reported for supported lipid bilayer formation. LNA formation with 16 nm particles was entropically driven and particles bound individually to yield "decorated" structures. In this case, increasing nanoparticle concentration yielded colloidal LNA aggregates and eventual charge inversion. In contrast, LNA formation with 30 nm particles was enthalpically driven, and the nanoparticles aggregated at the bilayer interface. These aggregates led to significant LNA aggregation and large bilayer sheets due to liposome rupture despite minimal charge screening of the liposome surface. In this case SLBs were present, but these structures were not dominant. Differences in LNA structure were also revealed through the lipid phase transition behavior. This work infers size-dependent nanoparticle binding and LNA formation mechanisms that can be used to tailor colloidal and bilayer properties. Analogies are made to polyelectrolyte patch charge heterogeneities and DNA complexation with cationic liposomes.  相似文献   

16.
A route to the preparation of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloids by refluxing ruthenium(III) chloride in low boiling point alcohols was developed. Deep purple colloids with shuttle-like ruthenium particles were also synthesized. XPS measurement verified the nanoparticles were in the metallic state. The morphology of metal nanoparticles was characterized by UV-visible absorption spectrophotometry, TEM and XRD.  相似文献   

17.
Silica nanoparticles with a narrow particle size distribution and controlled diameters of 10-20 nm are synthesized via hydrolysis and hydrothermal aging of tetraethylorthosilicate in an aqueous L-lysine solution. Cryo-transmission electron microscopy (cryo-TEM) reveals that the silica nanoparticles assemble to form close-packed nanoparticle crystals over short length scales on carbon-coated grids. Evaporative drying of the same sols results in nanoparticle stability and remarkable long-range facile ordering of the silica nanoparticles over scales greater than 10 microm. Whereas small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) discount the possibility of a core (silica)-shell (lysine) structure, the possibility remains for lysine occlusion within the silica nanoparticles and concomitant hydrogen bonding effects driving self-assembly. Facile ordering of the silica nanoparticles into multilayer and monolayer coatings over square-centimeter areas by evaporation-induced self-assembly is demonstrated using a novel dip-coating device.  相似文献   

18.
The direct formation of iron phosphate nanoparticles on hydroxyl-terminated SiO(2)/Si substrates with a narrow size distribution (average diameter = 2.2 nm) is achieved by a simple room temperature spontaneous reaction of ferric chloride and phosphoric acid. Single-walled carbon nanotubes (SWNTs) are grown in high yield from the synthesized iron phosphate nanoparticles by the thermal chemical vapor deposition (CVD) method, as confirmed by atomic force microscopy (AFM) and Raman spectroscopy. Furthermore, three-terminal, p-type, nanotube network field effect transistor (FET) devices are successfully fabricated using the synthesized SWNTs via the photolithography technique. The reduced solubility of Fe(III) ions when they form iron phosphate salts in aqueous media is the main driving force for the nanoparticle formation. Systematic control experiments reveal that the surface property, concentration, and pH of the reaction solution play equally important roles in the formation of nanoparticles.  相似文献   

19.
Highly stable and monodispersed silver nanoparticles with uniform morphology have been successfully prepared by microwave (MW) irradiation within a few seconds from the mixture of silver nitrate, ethanol and latex copolymer. The aqueous emulsion of latex copolymer acts as both reducing and stabilizing agent. To the best of our knowledge, it was the first time that the effect of MW irradiation time and latex concentration on the silver nanoparticle preparation and properties was analyzed. The formation of silver nanoparticles was confirmed by Ultraviolet–visible spectroscopy and transmission electron microscopy (TEM). The UV–Vis spectra are marked by the characteristic surface plasmon absorption band in the range 410–420 nm. From TEM images, silver nanoparticles were observed to be spherical with sizes ranging from 4 to 10 nm. Electron diffraction patterns on selected area, indicated that the silver nanoparticles are crystalline with face centered cubic structure.  相似文献   

20.
Joo J  Seo H  Chun C  Han K  Jung H  Kim S  Jeon S 《The Analyst》2012,137(3):584-587
A dynamic light scattering (DLS) method was adopted for measuring the corrosion of iron nanoparticles. The average diameter of the nanoparticles in a sodium chloride suspension increased linearly with time as iron oxide layers formed around the nanoparticles. The nanoparticle corrosion rate determined by DLS was found to be almost identical to the value obtained by conventional immersion tests (ASTM G31). The DLS method offers the advantage that measurements may be completed within several hours under natural corrosion conditions whereas the conventional immersion method requires several months. Application of the DLS method to alloy nanoparticles with a variety of chromium compositions showed that the nanoparticle sizes changed nonlinearly over time, and the curves were best fit by a first order exponential function. The first order time constants were found to be linearly related to the corrosion rates determined by ASTM G31.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号