共查询到20条相似文献,搜索用时 0 毫秒
1.
D'Angelo P De Panfilis S Filipponi A Persson I 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(10):3045-3055
This is the first systematic study exploring the potential of high-energy EXAFS as a structural tool for lanthanoids and third-row transition elements. The K-edge X-ray absorption spectra of the hydrated lanthanoid(III) ions both in aqueous solution and in solid trifluoromethanesulfonate salts have been studied. The K-edges of lanthanoids cover the energy range from 38 (La) to 65 keV (Lu), while the corresponding energy range for the L(3)-edges is 5.5 (La) to 9.2 keV (Lu). We show that the large widths of the core-hole states do not appreciably reduce the potential structural information in the high-energy K-edge EXAFS data. Moreover, for lanthanoid compounds, more accurate structural parameters are obtained from analysis of K-edge than from L(3)-edge EXAFS data. The main reasons are the much wider k range available and the absence of double-electron transitions, especially for the lighter lanthanoids. A comparative K- and L(3)-edge EXAFS data analysis of nonahydrated crystalline neodymium(III) trifluoromethanesulfonate demonstrates the clear advantages of K-edge analysis over conventionally performed studies at the L(3)-absorption edge for structural investigations of lanthanoid and third-row transition metal compounds. The coordination chemistry of the hydrated lanthanoid(III) ions in aqueous solution and solid trifluoromethanesulfonate salts, based on the results of both the K- and L(3)-edge EXAFS data, is thoroughly discussed in the next paper in this series (I. Persson, P. D'Angelo, S. De Panfilis, M. Sandstr?m, L. Eriksson, Chem. Eur. J. 2008, 14, DOI: 10.1002/chem.200701281). 相似文献
2.
Gerald A Metselaar Erik Schwartz René de Gelder Martin C Feiters Serge Nikitenko Grigory Smolentsev Galina E Yalovega Alexander V Soldatov Jeroen J L M Cornelissen Alan E Rowan Roeland J M Nolte 《Chemphyschem》2007,8(12):1850-1856
The structure of the active complex in the Ni-catalyzed polymerization of isocyanides to give polyisocyanides is investigated. It is shown by X-ray absorption spectroscopy (XAS), including EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure), and single-crystal X-ray diffraction, to contain a carbene-like ligand. This is the first structural characterization of a crucial intermediate in the so-called merry-go-round mechanism for Ni-catalyzed isocyanide polymerization. 相似文献
3.
4.
The X-ray absorption spectra (XAS) of LiCoO2, LiCo1/2Ni1/2O2 and LiNiO2 were examined together with X-ray diffraction (XRD). Co and Ni K-edge XANES spectra of LiCo1/2Ni1/2O2 are quite similar to that of LiCoO2 or LiNiO2, suggesting that electronic states of Co and Ni in LiCo1/2Ni1/2O2 are Co3+ and Ni3+. Analytical results of Co and Ni K-edge EXAFS oscillations on the first coordination shell of nickel and cobalt ions in LiCo1/2Ni1/2O2 indicate that the local environment around the targeted species is the same as that in LiCoO2 or LiNiO2. Since there is no doubt about the crystal and electronic structures of LiCoO2 and LiNiO2, the results indicate that LiCo1/2Ni1/2O2 consists of low-spin states of Co3+ and Ni3+ distributed at equivalent positions in triangular lattice of sites forming homogeneous transition metal oxide layers. Thus,
XAS complements XRD in describing solid solution LiCo1/2Ni1/2O2 of LiCoO2 and LiNiO2. The electrochemical behaviors of LiCoO2, LiCo1/2Ni1/2O2 and LiNiO2 are also restated and the effects of the formation of solid solution on the change in lattice dimension during topotactic
electrochemical reactions are discussed. 相似文献
5.
Stefan Müllegger Kathrin H?nel Thomas Strunskus Christof W?ll Adolf Winkler 《Chemphyschem》2006,7(12):2552-2558
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has been applied to reveal the molecular arrangement of ultrathin oligophenyl films [p-quaterphenyl (4P) and p-hexaphenyl (6P)] on Au(111). In the half-monolayer films the molecules lie flat on the surface but still have a considerable inter-ring twist of 30 degrees -40 degrees , similar to the gas-phase conformation. In the saturated monolayer film the second half of the molecules is side-tilted by an angle of less than 66 degrees with respect to the surface. This arrangement is already similar to that in bulk net planes of thicker films parallel to the surface, that is, the 4P(211) and 6P(21-3) planes, respectively. 相似文献
6.
Nenu CN van Lingen JN de Groot FM Koningsberger DC Weckhuysen BM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(18):4756-4763
X-ray absorption spectroscopy at the Cr K- and L(2,3)-edges was used to study the assembling process of a heterogeneous Cr-based single-site catalyst. The starting point was a Phillips-type system with monochromate species anchored on a silica surface, which was first reduced to a variety of different surface Cr(II) species. The reduced sample was modified with a 1,3,5-tribenzylhexahydro 1,3,5-triazine (TAC) ligand in the presence of CH(2)Cl(2) as solvent to yield a heterogeneous single-site Cr-based catalyst active in the trimerization of ethylene. The molecular structure of the resultant catalytic material consists of distorted octahedral Cr(III) species. The extended X-ray absorption fine-structure (EXAFS) spectroscopy fitting procedure in R space up to 2.5 A showed that the synthesis leads to coordination with a TAC ligand. The fit also shows that it was possible to complete the six-fold environment around Cr(III) with two oxygen atoms and one chloride ligand. This chloride ligand is formed in a redox process from the solvent and is responsible for the oxidation of surface Cr(II) to Cr(III). The obtained geometry and the local environment of the surface complex are discussed in light of its homogeneous counterpart and confirm the single-site characteristics of the prepared catalytic material. 相似文献
7.
The local structure of the double perovskite (Sr2‐xCax)FeMoO6 (0 ≤ × ≤ 2.0) and Sr2CrMO6 (M = Mo, W) systems have been probed by extended X‐ray absorption fine structure (EXAFS) spectroscopy at the Fe and Cr K‐edges. We found Fe‐O (ave) distance apparently decreases from 1.999 Å (x = 0) to 1.991 Å (x = 1.0) in (Sr2‐xCax)FeMoO6 (tetragonal structure). When x is increased further from 1.5 to 2.0, the Fe‐O bond distance decreased from 2.034 Å to 2.012 Å (monoclinic structure). In addition, Cr‐O, Sr‐Cr, and Cr‐Mo bond distances in Sr2CrWO6 are all slightly larger than the bond distances of Sr2CrMoO6, which is due to the ionic radius of the W5+ (0.62 Å) which is larger than the ionic radius of Mo5+ (0.61 Å). The results are consistent with our XRD refinements data. 相似文献
8.
Inside Cover: Ultrathin Hexagonal Hybrid Nanosheets Synthesized by Graphene Oxide‐Assisted Exfoliation of β‐Co(OH)2 Mesocrystals (Chem. Eur. J. 39/2014)
下载免费PDF全文

Dr. Suzi Deng Dr. Christie Thomas Cherian Xiao li Liu Hui Ru Tan Li Hsia Yeo Dr. Xiaojiang Yu Prof. Andrivo Rusydi Prof. B. V. R. Chowdari Prof. Hai Ming Fan Prof. Chorng Haur Sow 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(39):12326-12326
9.
10.
Ultrathin Hexagonal Hybrid Nanosheets Synthesized by Graphene Oxide‐Assisted Exfoliation of β‐Co(OH)2 Mesocrystals
下载免费PDF全文

Dr. Suzi Deng Dr. Christie Thomas Cherian Xiao li Liu Hui Ru Tan Li Hsia Yeo Dr. Xiaojiang Yu Prof. Andrivo Rusydi Prof. B. V. R. Chowdari Prof. Hai Ming Fan Prof. Chorng Haur Sow 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(39):12444-12452
In the present study, we report the synthesis of a high‐quality, single‐crystal hexagonal β‐Co(OH)2 nanosheet, exhibiting a thickness down to ten atomic layers and an aspect ratio exceeding 900, by using graphene oxide (GO) as an exfoliant of β‐Co(OH)2 nanoflowers. Unlike conventional approaches using ionic precursors in which morphological control is realized by structure‐directing molecules, the β‐Co(OH)2 flower‐like superstructures were first grown by a nanoparticle‐mediated crystallization process, which results in large 3D superstructure consisting of ultrathin nanosheets interspaced by polydimethoxyaniline (PDMA). Thereafter, β‐Co(OH)2 nanoflowers were chemically exfoliated by surface‐active GO under hydrothermal conditions into unilamellar single‐crystal nanosheets. In this reaction, GO acts as a two‐dimensional (2D) amphiphile to facilitate the exfoliation process through tailored interactions between organic and inorganic molecules. Meanwhile, the on‐site conjugation of GO and Co(OH)2 promotes the thermodynamic stability of freestanding ultrathin nanosheets and restrains further growth through Oswald ripening. The unique 2D structure combined with functionalities of the hybrid ultrathin Co(OH)2 nanosheets on rGO resulted in a remarkably enhanced lithium‐ion storage performance as anode materials, maintaining a reversible capacity of 860 mA h g?1 for as many as 30 cycles. Since mesocrystals are ubiquitous and rich in morphological diversity, the strategy of the GO‐assisted exfoliation of mesocrystals developed here provides an opportunity for the synthesis of new functional nanostructures that could bear importance in clean renewable energy, catalysis, photoelectronics, and photonics. 相似文献
11.
12.
Renate Petry Remigius Mastalerz Stefan Zahn Thomas G Mayerh?fer Günther V?lksch Lothar Viereck-G?tte Birgit Kreher-Hartmann Lothar Holz Markus Lankers Jürgen Popp 《Chemphyschem》2006,7(2):414-420
The applicability of a UV micro-Raman setup was assessed for the rapid identification of fibrous asbestos minerals using 257 and 244 nm laser light for excitation. Raman spectra were obtained from six asbestos reference standards belonging to two basic structural groups: the serpentines (chrysotile) and the amphiboles (crocidolite, tremolite, amosite, anthophyllite, and actinolite). The UV Raman spectra reported here for the first time are free from fluorescence, which is especially helpful in assessing the hydroxyl-stretching vibrations. The spectra exhibit sharp bands characteristic of each asbestos species, which can be used for the unambiguous identification of known and unknown asbestos fibres. Evident changes of the relative band intensities sensitively reflect the chemical substitutions that typically occur in asbestos minerals. The elemental composition of the asbestos reference samples was analysed by using a scanning electron microscope equipped with an energy-dispersive X-ray (EDX) spectrometer. The discussion of the experimental results in terms of EDX analysis sheds new light on the structural and vibrational consequences of cation distribution in asbestos minerals. 相似文献
13.
Guillon E Merdy P Aplincourt M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2003,9(18):4479-4484
To develop a solid scientific basis for maintaining soil quality and formulating effective remediation strategies, it is critical to determine how environmentally-important trace metals are sequestered in soils at the molecular scale. The speciation of Mn, Fe and Cu in soil organic matter has been determined by synchrotron-based techniques: extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES). We show the structural similarity between the surface complexes of Mn(II), Fe(III) and Cu(II). These cations are bound to the surface through oxygen atoms. Each one presents a more or less tetragonal-distorted octahedral geometry. The use of X-ray absorption spectroscopy provides a relevant method for determining trace-metal speciation in both natural and contaminated environmental materials. 相似文献
14.
Paolo Ferruti Elisabetta Ranucci Sabrina Bianchi Luigi Falciola Patrizia R. Mussini Manuela Rossi 《Journal of polymer science. Part A, Polymer chemistry》2006,44(7):2316-2327
An amphoteric polyamidoamine (PAA)‐based hydrogel, named INT‐PAA1, with a novel molecular architecture was prepared and studied as a Co2+‐, Ni2+‐, and Cu2+‐sorbing material. This hydrogel was obtained by the synthesis of a PAA in the presence of a second presynthesized PAA carrying many primary amino groups as side substituents, which acted as a macromolecular crosslinking agent. Therefore, it had an intersegmented structure. INT‐PAA1 exhibited a remarkable sorption capacity and sorption rate for Co2+, Ni2+, and Cu2+ that were advantageously in situ monitored by cyclic voltammetry. An extended X‐ray absorption fine structure spectroscopy characterization of the Co2+/INT‐PAA1 complex was also performed. The very fast and quantitative metal‐ion uptake, made apparent by an intense coloring of the hydrogel, showed remarkable potential for environmental applications such as heavy‐metal detection, recovery, and elimination. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2316–2327, 2006 相似文献
15.
Ray K Debeer George S Solomon EI Wieghardt K Neese F 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(10):2783-2797
The electronic structures of [M(L(Bu))(2)](-) (L(Bu)=3,5-di-tert-butyl-1,2-benzenedithiol; M=Ni, Pd, Pt, Cu, Co, Au) complexes and their electrochemically generated oxidized and reduced forms have been investigated by using sulfur K-edge as well as metal K- and L-edge X-ray absorption spectroscopy. The electronic structure content of the sulfur K-edge spectra was determined through detailed comparison of experimental and theoretically calculated spectra. The calculations were based on a new simplified scheme based on quasi-relativistic time-dependent density functional theory (TD-DFT) and proved to be successful in the interpretation of the experimental data. It is shown that dithiolene ligands act as noninnocent ligands that are readily oxidized to the dithiosemiquinonate(-) forms. The extent of electron transfer strongly depends on the effective nuclear charge of the central metal, which in turn is influenced by its formal oxidation state, its position in the periodic table, and scalar relativistic effects for the heavier metals. Thus, the complexes [M(L(Bu))(2)](-) (M=Ni, Pd, Pt) and [Au(L(Bu))(2)] are best described as delocalized class III mixed-valence ligand radicals bound to low-spin d(8) central metal ions while [M(L(Bu))(2)](-) (M=Cu, Au) and [M(L(Bu))(2)](2-) (M=Ni, Pd, Pt) contain completely reduced dithiolato(2-) ligands. The case of [Co(L(Bu))(2)](-) remains ambiguous. On the methodological side, the calculation led to the new result that the transition dipole moment integral is noticeably different for S(1s)-->valence-pi versus S(1s)-->valence-sigma transitions, which is explained on the basis of the differences in radial distortion that accompany chemical bond formation. This is of importance in determining experimental covalencies for complexes with highly covalent metal-sulfur bonds from ligand K-edge absorption spectroscopy. 相似文献
16.
Ganapathy S van Eck ER Kentgens AP Mulder FM Wagemaker M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(52):14811-14816
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. 相似文献
17.
Ng SH Tran N Bramnik KG Hibst H Novák P 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(35):11141-11148
Li(4)V(3)O(8) materials have been prepared by chemical lithiation by Li(2)S of spherical Li(1.1)V(3)O(8) precursor materials obtained by a spray-drying technique. The over-lithiated vanadates were characterised physically by using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and electrochemically using galvanostatic charge-discharge and cyclic voltammetry measurements in both the half-cell (vs. Li metal) and full-cell (vs. graphite) systems. The Li(4)V(3)O(8) materials are stable in air for up to 5 h, with almost no capacity drop for the samples stored under air. However, prolonged exposure to air will severely change the composition of the Li(4)V(3)O(8) materials, resulting in both Li(1.1)V(3)O(8) and Li(2)CO(3). The electrochemical performance of these over-lithiated vanadates was found to be very sensitive to the conductive additive (carbon black) content in the cathode. When sufficient carbon black is added, the Li(4)V(3)O(8) cathode exhibits good cycling behaviour and excellent rate capabilities, matching those of the Li(1.1)V(3)O(8) precursor material, that is, retaining an average charge capacity of 205 mAh g(-1) at 2800 mA g(-1) (8C rate; 1C rate means full charge or discharge of a battery in one hour), when cycled in the potential range of 2.0-4.0 V versus Li metal. When applied in a non-optimised full cell system (vs. graphite), the Li(4)V(3)O(8) cathode showed promising cycling behaviour, retaining a charge capacity (Li(+) extraction) above 130 mAh g(-1) beyond 50 cycles, when cycled in the voltage range of 1.6-4.0 V, at a specific current of 117 mA g(-1) (C/3 rate). 相似文献
18.
Sébastien Adora Jean Paul Simon Yvonne Soldo-Olivier René Faure Eric Cha?net Robert Durand 《Chemphyschem》2004,5(8):1178-1184
This paper is devoted to an alternative method to characterize platinum nanoparticles: X-ray powder diffraction with synchrotron radiation in classical and anomalous dispersion modes. We could straightforwardly determine the mean diameter and the surface concentration of carbon-supported platinum nanoparticles, even down to diameters of 2-3 nm and catalyst amounts of 0.03 mgcm(-2). We could study early stages of the formation of electrochemically prepared platinum nanoparticles from [PtCl4(2-) species preadsorbed on carbon inside a carbon-Nafion layer, to obtain a fuel-cell electrode. Our X-ray diffraction (XRD) results demonstrate that, provided the superficial concentration is not too high, new and smaller particles appear for each current pulse, since there is not any strong nucleation limitation for the high overvoltages obtained. Hydrogen evolution becomes the main electrochemical phenomenon on particles of sufficient size and it explains the noteworthy size limitation. Better yields of Pt metal are obtained for smaller current densities and longer times: the rate-determining step is then not electrochemical, but chemical or related to superficial diffusion. 相似文献
19.
There are numerous methods of preparing nanocrystalline materials. Magnesium oxide is an ideal model system on which to probe the relation of the preparative route and the microstructure. Using X-ray absorption spectroscopy (XAS) we show that the sol-gel route can be used to prepare highly crystalline material provided there is careful control of the calcination conditions. In the present work this is achieved by calcining at high temperatures (at least 800 degrees C). However, this results in grain growth that can be prevented by the addition of a pinning agent, SiO(2), during the preparation of the sol. The pinned samples maintain a particle size of 11 nm even after calcining at 1000 degrees C. Ball-milling is a common method of preparing nanocrystalline oxides, however the present work shows that this produces a significant fraction of amorphous material, the fraction increasing with decreasing grain size (e.g. approximately 30 % for a grain size of 23 nm). 相似文献
20.
The chromate conversion coating formed on commercial tinplate via a cathode electrolytic dichromate treatment has been studied by X‐ray photoelectron spectroscopy (XPS) and electrochemistry methods. Through the analysis of the XPS, it was shown that there existed Cr, O, and Sn in the chromate coating and the chromate film consisted mainly of Cr(OH)3, Cr2O3, Sn, and SnOx. The current density decreased with increasing of the electric charge. The corrosion resistance for tinplate is relative with the content of chromium in the passivation film. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献