首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Accurate spectral information on formic acid has wide application to radioastronomy since it was the first organic acid found in interstellar space. In this work, the infrared absorption spectrum of the nu1 band of deuterated formic acid (DCOOD) has been measured on a Bomem DA3.002 Fourier transform spectrometer in the wavenumber region 2560-2690 cm(-1) with a resolution of 0.004 cm(-1). A total of 292 infrared transitions have been assigned in this hybrid type A and B band centred at 2631.8736 +/- 0.0004 cm(-1). The assigned transitions have been fitted to give a set of eight rovibrational constants for the nu1 = 1 state with a standard deviation of 0.00078 cm(-1).  相似文献   

2.
Diode laser spectra of SF(5)Cl have been recorded in the nu(8) band region at a temperature of ca. 240 K, a pressure of 0.25 mbar and an instrumental bandwidth of ca. 0.001 cm(-1). Four regions have been studied: a first one in the P-branch (906.849-907.687 cm(-1)), a second one in the Q-branch (910.407-910.944 cm(-1)), and two other ones in the R-branch (913.957-914.556 and 917.853-918.705 cm(-1) ). The whole nu(1)/nu(8) dyad of SF(5)35Cl has been previously recorded in the group of Professor H. Burger in Wuppertal, thanks to a Fourier transform infrared spectrometer. These data have thus been combined with our diode laser ones in the aim of refining the analysis. We used an effective Hamiltonian developed up to the fourth order and a set of programs called C(4nu)TDS. One thousand three hundred and forty-six transitions for nu(1), 495 (FTIR: 351; diode laser: 144) transitions for nu(8), and 406 ground state combination differences have been assigned and fitted. A global fit has been obtained with a rms of 0.00081 cm(-1) for the nu(1) band, 0.0012 cm(-1) for the FTIR data of the nu(8) band, 0.00055 cm(-1) for the diode laser data of this same band, and 0.00064 cm(-1) for the ground state. It appears that more data (for instance, using a supersonic jet) are still necessary to obtain a completely satisfactory analysis of the nu(8) region.  相似文献   

3.
4.
5.
The nu 3(sigma u) fundamental vibration of 1 sigma g+ Si2C3 has been observed using a laser vaporization-supersonic cluster beam-diode laser spectrometer. Forty rovibrational transitions were measured in the range of 1965.8 to 1970.9 cm-1 with a rotational temperature of 10-15 K. A least-squares fit of these transitions yielded the following molecular constants: nu 3(sigma u)=1968.188 31(18) cm-1, B"=0.031 575 1(60) cm-1, and B'=0.031 437 4(57) cm-1. These results are in excellent agreement with recent Fourier transform infrared (FTIR) measurements of Si2C3 trapped in a solid Ar matrix [J. Chem. Phys. 100, 181(1994)] and with ab initio calculations [J. Chem. Phys. 100, 175 (1994)] which suggest cumulenic-like bonding for Si2C3, analogous to the isovalent C5 carbon cluster.  相似文献   

6.
The (3)(1)Pi state of the NaCs molecule was studied by high resolution Fourier-transform spectroscopy. The (3)(1)Pi-->X (1)Sigma(+) laser induced fluorescence was excited by an Ar(+) ion laser or by a single-mode frequency-doubled cw Nd:YAG laser. The presence of argon buffer gas yielded rich rotational relaxation spectra allowing to enlarge the data set for the (3)(1)Pi state term values, as well as to observe Lambda splittings in a wide range of vibrational (v(')) and rotational (J(')) quantum numbers. The data field includes about 820 energy levels of (3)(1)Pi NaCs in the range from v(')=0 to 37 and from J(')=3 to 190, which corresponds to ca. 95% of the potential well depth. Direct fit of the potential energy curve to the level energies is realized using the inverted perturbation approach method; a set of Dunham coefficients is also presented.  相似文献   

7.
The high-resolution far-infrared absorption spectrum of the gaseous molecular complex H(3)N-HCN is recorded by means of static gas-phase Fourier transform far-infrared spectroscopy at 247 K, using a synchrotron radiation source. The spectrum contains distinct rotational structures which are assigned to the intermolecular NH(3) libration band nu9(1) (nu(B)) of the pyramidal H(3)N-HCN complex. A rovibrational analysis based on a standard semirigid symmetric top molecule model yields the band origin of 260.03(10) cm(-1), together with values for the upper state rotational constant B' and the upper state quartic centrifugal distortion constants D'(J) and D'(JK). The values for the upper state spectroscopic constants indicate that the hydrogen bond in the H(3)N-HCN complex is destabilized by 5% and elongates by 0.010 A upon excitation of a quantum of libration of the hydrogen bond acceptor molecule.  相似文献   

8.
The B-X system of Na3 has been investigated at rotational resolution by using cw resonant two photon ionization spectroscopy. Model calculations of the spectra were performed with bond angles and distances as adjustable parameters. In this way, information on the geometry of the ground state and the B state of the sodium trimer was derived.  相似文献   

9.
The microwave spectrum of cyclopropylphosphine-borane, C(3)H(5)PH(2)-BH(3), has been investigated in the frequency range 150-195 GHz. The spectral assignment was supported by high level ab initio calculations. Two stable conformations have been predicted: the most stable antiperiplanar form and synclinal form that is higher in energy by 7.3 kJ/mol. In the observed spectra, only the most stable antiperiplanar (ap) form has been assigned. The analysis of the rotational spectra in the lowest excited vibrational states of the ap conformer has enabled determination of the potential function for the C-P torsional mode in the vicinity of equilibrium position. The barrier to internal rotation of the BH(3) top has been determined to be 9.616(15) kJ/mol and agrees well with quantum chemical calculations.  相似文献   

10.
The millimeter-wave rotational spectrum of vinyltellurol has been recorded and assigned for the first time. To support the spectrum assignment, high level ab initio calculations have been carried out. Geometries, total electronic energies, and harmonic vibrational frequencies have been determined at the MP2 level. A small-core relativistic pseudopotential basis set (cc-pVTZ-PP) was employed to describe the tellurium atom. Two stable conformers, synperiplanar (sp) and anticlinal (ac), have been identified. The sp conformer is planar with a small negative inertia defect of -0.025 u ?(2). The ac conformer was found to be nonplanar with a C-C-Te-H dihedral angle of about 140° from sp. This conformer exhibits a large amplitude motion associated with the torsion about the C-Te bond. The barrier to internal rotation is about 1 kJ/mol, according to the theoretical calculations. For the ac conformation, a torsional potential function consisting of quartic and quadratic terms of the torsional angle has been partially determined from the observed rotational constants.  相似文献   

11.
The nu 5 antisymmetric stretching vibration of 1 sigma+g C9 has been observed using direct infrared diode laser absorption spectroscopy of a pulsed supersonic cluster beam. Twenty-eight rovibrational transitions measured in the region of 2079-2081 cm-1 were assigned to this band. A combined least squares fit of these transitions with previously reported nu 6 transitions yielded the following molecular constants for the nu 5 band: nu 0 = 2 079.673 58(17) cm-1, B"= 0.014 321 4(10) cm-1, and B'=0.014 288 9(10) cm-1. The IR intensity of the nu 5 band relative to nu 6 was found to be 0.108 +/- 0.006. Theoretical predictions for the relative intensities vary widely depending upon the level of theory employed, and the experimental value reported here is in reasonable agreement only with the result obtained from the most sophisticated ab initio calculation considered (CCSD).  相似文献   

12.
Photodissociation of CH(3)I(+) in the ground vibronic state generated by mass-analyzed threshold ionization resulted in a superb spectrum for the first excited electronic state (A (2)A(1)) with hardly any spurious peak. Rotational structure in the spectrum could be resolved by using a single mode laser. This structure for one vibronic band, 2(1)3(1)6(1), was analyzed with the assumption of Hund's case (a) scheme both in the ground and excited electronic states.  相似文献   

13.
Absolute band intensities of acetone ((CH3)2CO) in the nu19/nu23 and nu7 band systems near 530 and 777 cm(-1), respectively, were measured at temperatures of 232, 262 and 295 K, using a Fourier transform infrared (FTIR) spectrometer. No evident temperature dependence for the band intensities was observed. The dipole moments and the fundamental band intensities were derived in the harmonic oscillator approximation. The results are useful for the spectroscopic retrieval of acetone concentrations in the upper atmosphere.  相似文献   

14.
The Fourier transform infrared spectrum of monoisotopic D3Si35Cl in the region of the nu2/nu5 band system was recorded with a resolution of 2.4x10(-3) cm-1. More than 9000 lines of the strongly Coriolis x,y-coupled bands, (nu2)0=701.936, and (nu5)0=688.898 cm-1, have been assigned, among them 276 forbidden but perturbation allowed transitions around avoided crossings according to Delta(k-l)=+/-3 mechanisms. Three different models taking into account redundancies in the framework of unitary equivalent reductions of the rovibrational Hamiltonian have been employed to fit the data. All three models reproduced consistently the full data set employing 28 refined parameters with an rms deviation of 0.31x10(-3) cm-1. The equivalence of the parameter sets was established by the agreement of parameter sums obtained with the different models. The analysis of the avoided crossings, together with the fit of the forbidden lines, allowed an independent determination of the ground state parameters A0 and D(K)0. Combined with existing data for nu1, nu3, nu4, and nu6, the present results allowed the determination of experimental values, Ae=1.4371895(94) and Be=0.19823049(59) cm-1. The experimental results are compared with those of previous ab initio calculations of the anharmonic force field.  相似文献   

15.
Summary Several sensitive detection techniques, such as excitation spectroscopy or resonant two-photon ionization spectroscopy are applied to laser spectroscopy with sub-Doppler resolution in collimated molecular beams. Due to internal cooling during the adiabatic expansion in supersonic beams rotational temperatures below 10 K can be reached which results in a drastic simplification of otherwise complex molecular spectra.Different schemes of optical-optical double resonance spectroscopy with two cw or pulsed narrow band lasers are discussed which allow the unambiguous assignment of perturbed molecular spectra. The techniques are illustrated by their application to NO2, SO2, Cs2 and to the study of Rydberg states of Li2.
Laser-Molekularspektroskopie mit hoher Auflösung
Zusammenfassung Empfindliche Nachweismethoden der Laserspektroskopie, wie z. B. die Anregungsspektroskopie oder die resonante Zweiphotonen-Ionisation werden angewandt auf die Doppler-freie Untersuchung kleiner Moleküle, wie NO2 und SO2 in kollimierten Überschallstrahlen. Durch die drastische Abkühlung bei der adiabatischen Expansion können Rotationstemperaturen unter 10 K erreicht werden, was die Liniendichte in den Spektren stark reduziert und damit die Analyse der Spektren wesentlich vereinfacht.Verschiedene Techniken der optischen-optischen Doppelresonanz-Spektroskopie mit zwei kontinuierlichen oder gepulsten Lasern werden illustriert am Beispiel der Untersuchung von Rydberg-Zuständen von Li2 und des langreichweitigen Potentials von Cs2. Der Vorteil dieser Techniken für die Analyse komplexer Molekülspektren wird diskutiert.
  相似文献   

16.
Hydrogen trioxy (HOOO) and its deuterated analog (DOOO) have been generated in a supersonic free-jet expansion through association of photolytically generated OH or OD and molecular oxygen. The radicals were detected using infrared action spectroscopy, a highly sensitive double resonance technique. Rotationally resolved spectra of combination bands of HOOO and DOOO comprising one quantum of OH or OD stretch (nu(1)) and one quantum of a lower frequency mode (nu(1)+nu(n) where n=3-6), including HDOO bend (nu(3)), OOO bend (nu(4)), central OO stretch (nu(5)), and HDOOO torsion (nu(6)), have been observed and assigned to the trans conformer. All but one of these bands are accompanied by unstructured features which are tentatively assigned to the corresponding vibration of the cis conformer. In total, five additional bands of HOOO and four of DOOO have been recorded and assigned. These data represent the first gas-phase observation of the low-frequency modes of HOOO and DOOO and they are found to differ significantly from previous matrix studies and theoretical predictions. Accurate knowledge of the vibrational frequencies is crucial in assessing thermochemical properties of HOOO and present possible means of detection in the atmosphere.  相似文献   

17.
The optical absorption spectrum of small lithium clusters has been measured up to Li8. In Li3 high resolution Two Photon Ionization (TPI) spectra have been recorded allowing us to determine the geometry and potential surfaces of the ground and excited states. In larger clusters, the excited states are dissociative and the absorption spectra have been obtained by Depletion Spectroscopy. Vibronic resolution is still achieved in Li4, but not in larger clusters. The measured spectra exhibit a rather small number of transitions to electronically excited states. In Li7, only one intense band is observed in the blue region, while in Li8, an intense band is also observed in the blue region and a much weaker band in the red region. All the obtained results are in very good agreement with the ab initio calculation of Bonacic-Koutecky et al. This demonstrates that molecular effects are always present in these small clusters. The semi-classical models of surface plasma resonances are also discussed.  相似文献   

18.
Thirteen specific infrared bands in the 2350 cm(-1) region are assigned to carbon dioxide clusters, (CO(2))(N), with N = 6, 7, 9, 10, 11, 12 and 13. The spectra are observed in direct absorption using a tuneable infrared laser to probe a pulsed supersonic jet expansion of a dilute mixture of CO(2) in He carrier gas. Assignments are aided by cluster structure calculations made using two reliable CO(2) intermolecular potential functions. For (CO(2))(6), two highly symmetric isomers are observed, one with S(6) symmetry (probably the more stable form), and the other with S(4) symmetry. (CO(2))(13) is also symmetric (S(6)), but the remaining clusters are asymmetric tops with no symmetry elements. The observed rotational constants tend to be slightly (≈2%) smaller than those from the predicted structures. The bands have increasing vibrational blueshifts with increasing cluster size, similar to those predicted by the resonant dipole-dipole interaction model but significantly larger in magnitude.  相似文献   

19.
The spectrum of the weakly bound complex Ar-CH4 in the 7 microm region was discovered, analysed, and compared with a spectrum, predicted from ab initio calculations. The measurements were made by probing a supersonic gas expansion with a tunable diode laser (TDL). Several bands of Ar-CH4 associated with different ro-vibrational transitions of the v4 vibration of CH4 were recorded and analysed in a spectral region from 1295 to 1330 cm(-1). In particular the following transitions were studied: j = 1 <-- 0 (at 1311 cm(-1)) reported in Pak et al. [Z. Naturforsch. 53 (1998) 725], j = 0 <-- 1 (at 1301 cm(-1)), j = 2 <-- 1 (at 1316 cm(-1)), and j = 3 <-- 2 transitions (at 1322 cm(-1)). Here, j denotes the angular momentum of the methane unit inside the complex. Analysis of the recently recorded j = 1 <-- 1 transitions at about 1306 cm(-1) in the region of methane Q(1) is in progress. The experimental results are compared with ab initio calculations. The close agreement between observed and ab initio spectra is convincingly demonstrated with respect to the gross spectral features, including many details of the spectra.  相似文献   

20.
IR+UV double resonant ion-dip and ion-enhancement spectroscopies are employed to study the nu3 asymmetric CH stretch vibration fundamental of CH3 in the ground and 3p(z) Rydberg electronic states. CH3 radical is synthesized in the supersonic jet expansion by flash pyrolysis of azomethane (CH3NNCH3) prior to the expansion. The Q band of the 3(1) (1) 3p(z)<--X transition of CH3, not detected by conventional UV resonantly enhanced multiphoton ionization (REMPI) spectroscopy, is determined to lie at 59,898 cm(-1) using IR+UV REMPI spectroscopy. Energy of the asymmetric CH stretch of CH3 in the 3p(z) Rydberg state, nu3(3p(z)), is 3087 cm(-1), redshifted by approximately 74 cm(-1) with respect to ground state nu3(X).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号