首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a counterpart to best approximation, the best co-approximation in normed linear spaces was introduced by Franchetti and Furi. In this paper, this new concept is employed to improve various characterizations of the proximinal and Chebychev for the special subspace of Banach space.  相似文献   

2.
Multiplicative programming problems (MPPs) are global optimization problems known to be NP-hard. In this paper, we employ algorithms developed to compute the entire set of nondominated points of multi-objective linear programmes (MOLPs) to solve linear MPPs. First, we improve our own objective space cut and bound algorithm for convex MPPs in the special case of linear MPPs by only solving one linear programme in each iteration, instead of two as the previous version indicates. We call this algorithm, which is based on Benson’s outer approximation algorithm for MOLPs, the primal objective space algorithm. Then, based on the dual variant of Benson’s algorithm, we propose a dual objective space algorithm for solving linear MPPs. The dual algorithm also requires solving only one linear programme in each iteration. We prove the correctness of the dual algorithm and use computational experiments comparing our algorithms to a recent global optimization algorithm for linear MPPs from the literature as well as two general global optimization solvers to demonstrate the superiority of the new algorithms in terms of computation time. Thus, we demonstrate that the use of multi-objective optimization techniques can be beneficial to solve difficult single objective global optimization problems.  相似文献   

3.
A Dinkelbach-type algorithm is proposed in this paper to solve a class of continuous-time linear fractional programming problems. We shall transform this original problem into a continuous-time non-fractional programming problem, which unfortunately happens to be a continuous-time nonlinear programming problem. In order to tackle this nonlinear problem, we propose the auxiliary problem that will be formulated as parametric continuous-time linear programming problem. We also introduce a dual problem of this parametric continuous-time linear programming problem in which the weak duality theorem also holds true. We introduce the discrete approximation method to solve the primal and dual pair of parametric continuous-time linear programming problems by using the recurrence method. Finally, we provide two numerical examples to demonstrate the usefulness of this practical algorithm.  相似文献   

4.
A numerical algorithm based on parametric approach is proposed in this paper to solve a class of continuous-time linear fractional max-min programming problems. We shall transform this original problem into a continuous-time non-fractional programming problem, which unfortunately happens to be a continuous-time nonlinear programming problem. In order to tackle this nonlinear problem, we propose the auxiliary problem that will be formulated as a parametric continuous-time linear programming problem. We also introduce a dual problem of this parametric continuous-time linear programming problem in which the weak duality theorem also holds true. We introduce the discrete approximation method to solve the primal and dual pair of parametric continuous-time linear programming problems by using the recurrence method. Finally, we provide two numerical examples to demonstrate the usefulness of this algorithm.  相似文献   

5.
In this paper, we consider a linear restriction problem of Hermitian reflexive matrices and its approximation. By using the properties and structure of Hermitian reflexive matrices and the special properties of reflexive vectors and anti-reflexive vectors, we convert the linear restriction problem to an equivalence problem trickily, which is a special feature of this paper and is a different method from other articles. Then we solve this problem completely and also obtain its optimal approximate solution. Moreover, an algorithm provided for it and the numerical examples show that the algorithm is feasible.  相似文献   

6.
The L norm has been widely studied as a criterion for curve fitting problems. This paper presents an algorithm to solve discrete approximation problems in the L norm. The algorithm is a special-purpose linear programming method using the dual form of the problem, which employs a reduced basis and multiple pivots. Results of the computational experience with a computer code version of the algorithm are presented.  相似文献   

7.
We present an approximation algorithm for solving large 0–1 integer programming problems whereA is 0–1 and whereb is integer. The method can be viewed as a dual coordinate search for solving the LP-relaxation, reformulated as an unconstrained nonlinear problem, and an approximation scheme working together with this method. The approximation scheme works by adjusting the costs as little as possible so that the new problem has an integer solution. The degree of approximation is determined by a parameter, and for different levels of approximation the resulting algorithm can be interpreted in terms of linear programming, dynamic programming, and as a greedy algorithm. The algorithm is used in the CARMEN system for airline crew scheduling used by several major airlines, and we show that the algorithm performs well for large set covering problems, in comparison to the CPLEX system, in terms of both time and quality. We also present results on some well known difficult set covering problems that have appeared in the literature.  相似文献   

8.
The second-order cone program (SOCP) is an optimization problem with second-order cone (SOC) constraints and has achieved notable developments in the last decade. The classical semi-infinite program (SIP) is represented with infinitely many inequality constraints, and has been studied extensively so far. In this paper, we consider the SIP with infinitely many SOC constraints, called the SISOCP for short. Compared with the standard SIP and SOCP, the studies on the SISOCP are scarce, even though it has important applications such as Chebychev approximation for vector-valued functions. For solving the SISOCP, we develop an algorithm that combines a local reduction method with an SQP-type method. In this method, we reduce the SISOCP to an SOCP with finitely many SOC constraints by means of implicit functions and apply an SQP-type method to the latter problem. We study the global and local convergence properties of the proposed algorithm. Finally, we observe the effectiveness of the algorithm through some numerical experiments.  相似文献   

9.
The geometric duality theory of Heyde and Löhne (2006) defines a dual to a multiple objective linear programme (MOLP). In objective space, the primal problem can be solved by Benson’s outer approximation method (Benson 1998a,b) while the dual problem can be solved by a dual variant of Benson’s algorithm (Ehrgott et al. 2007). Duality theory then assures that it is possible to find the (weakly) nondominated set of the primal MOLP by solving its dual. In this paper, we propose an algorithm to solve the dual MOLP approximately but within specified tolerance. This approximate solution set can be used to calculate an approximation of the weakly nondominated set of the primal. We show that this set is a weakly ε-nondominated set of the original primal MOLP and provide numerical evidence that this approach can be faster than solving the primal MOLP approximately.  相似文献   

10.
The volume algorithm: producing primal solutions with a subgradient method   总被引:1,自引:0,他引:1  
We present an extension to the subgradient algorithm to produce primal as well as dual solutions. It can be seen as a fast way to carry out an approximation of Dantzig-Wolfe decomposition. This gives a fast method for producing approximations for large scale linear programs. It is based on a new theorem in linear programming duality. We present successful experience with linear programs coming from set partitioning, set covering, max-cut and plant location. Received: June 15, 1998 / Accepted: November 15, 1999?Published online March 15, 2000  相似文献   

11.
Chebychev estimation, or L norm estimation, has as its criterion the minimization of the largest absolute residual. This paper presents a linear programming algorithm which allows linear restrictions on the parameters, and which utilizes a reduced basis and multiple pivots.  相似文献   

12.
Many important large-scale linear programs with special structures lead to special computational procedures which are more efficient than the ordinary procedure of the generalized methods. Problems and their solvers taking advantage of multiple updatings of the basis in the dual simplex type method are presented. Computational results run by the efficient algorithm and a standard code MINOS for the test problems are compared and analyzed. It is shown that the amount of work for the optimal solution for the problem can be reduced by the new algorithm.  相似文献   

13.
This article studies a numerical solution method for a special class of continuous time linear programming problems denoted by (SP). We will present an efficient method for finding numerical solutions of (SP). The presented method is a discrete approximation algorithm, however, the main work of computing a numerical solution in our method is only to solve finite linear programming problems by using recurrence relations. By our constructive manner, we provide a computational procedure which would yield an error bound introduced by the numerical approximation. We also demonstrate that the searched approximate solutions weakly converge to an optimal solution. Some numerical examples are given to illustrate the provided procedure.  相似文献   

14.
《Optimization》2012,61(11):1637-1663
We consider the problem of finding an arrangement of rectangles with given areas that minimizes the total length of all inner and outer border lines. We present a polynomial time approximation algorithm and derive an upper bound estimation on its approximation ratio. Furthermore, we give a formulation of the problem as mixed-integer nonlinear program and show that it can be approximatively reformulated as linear mixed-integer program. On a test set of problem instances, we compare our approximation algorithm with another one from the literature. Using a standard numerical mixed-integer linear solver, we show that adding the solutions from the approximation algorithm as advanced starter helps to reduce the overall solution time for proven global optimality, or gives better primal and dual bounds if a certain time-limit is reached before.  相似文献   

15.
We propose and study a new method, called the Interior Epigraph Directions (IED) method, for solving constrained nonsmooth and nonconvex optimization. The IED method considers the dual problem induced by a generalized augmented Lagrangian duality scheme, and obtains the primal solution by generating a sequence of iterates in the interior of the dual epigraph. First, a deflected subgradient (DSG) direction is used to generate a linear approximation to the dual problem. Second, this linear approximation is solved using a Newton-like step. This Newton-like step is inspired by the Nonsmooth Feasible Directions Algorithm (NFDA), recently proposed by Freire and co-workers for solving unconstrained, nonsmooth convex problems. We have modified the NFDA so that it takes advantage of the special structure of the epigraph of the dual function. We prove that all the accumulation points of the primal sequence generated by the IED method are solutions of the original problem. We carry out numerical experiments by using test problems from the literature. In particular, we study several instances of the Kissing Number Problem, previously solved by various approaches such as an augmented penalty method, the DSG method, as well as several popular differentiable solvers. Our experiments show that the quality of the solutions obtained by the IED method is comparable with (and sometimes favourable over) those obtained by the differentiable solvers.  相似文献   

16.
Piecewise affine functions arise from Lagrangian duals of integer programming problems, and optimizing them provides good bounds for use in a branch and bound method. Methods such as the subgradient method and bundle methods assume only one subgradient is available at each point, but in many situations there is more information available. We present a new method for optimizing such functions, which is related to steepest descent, but uses an outer approximation to the subdifferential to avoid some of the numerical problems with the steepest descent approach. We provide convergence results for a class of outer approximations, and then develop a practical algorithm using such an approximation for the compact dual to the linear programming relaxation of the uncapacitated facility location problem. We make a numerical comparison of our outer approximation method with the projection method of Conn and Cornuéjols, and the bundle method of Schramm and Zowe. Received September 10, 1998 / Revised version received August 1999?Published online December 15, 1999  相似文献   

17.
A general convex multiobjective control approximation problem is considered with respect to duality. The single objectives contain linear functionals and powers of norms as parts, measuring the distance between linear mappings of the control variable and the state variables. Moreover, linear inequality constraints are included. A dual problem is established, and weak and strong duality properties as well as necessary and sufficient optimality conditions are derived. Point-objective location problems and linear vector optimization problems turn out to be special cases of the problem investigated. Therefore, well-known duality results for linear vector optimization are obtained as special cases.  相似文献   

18.
The Chebychev (also Minimax andL Norm) criterion has been widely studied as a method for curve fitting. Published computer codes are available to obtain the optimal parameter estimates to fit a linear function to a set of given points under the Chebychev criterion. The purpose of this paper is to study procedures for obtaining the best subset ofq parameters from a given set ofm parameters whereq is less-than-or-equal-tom.  相似文献   

19.
This paper proposes a conic approximation algorithm for solving quadratic optimization problems with linear complementarity constraints.We provide a conic reformulation and its dual for the original problem such that these three problems share the same optimal objective value. Moreover, we show that the conic reformulation problem is attainable when the original problem has a nonempty and bounded feasible domain. Since the conic reformulation is in general a hard problem, some conic relaxations are further considered. We offer a condition under which both the semidefinite relaxation and its dual problem become strictly feasible for finding a lower bound in polynomial time. For more general cases, by adaptively refining the outer approximation of the feasible set, we propose a conic approximation algorithm to identify an optimal solution or an \(\epsilon \)-optimal solution of the original problem. A convergence proof is given under simple assumptions. Some computational results are included to illustrate the effectiveness of the proposed algorithm.  相似文献   

20.
In [6], a polynomial algorithm based on successive piecewise linear approximation was described. The algorithm is polynomial for constrained nonlinear (convex or concave) optimization, when the constraint matrix has a polynomial size subdeterminant. We propose here a practical adaptation of that algorithm with the idea of successive piecewise linear approximation of the objective on refined grids, and the testing of the gap between lower and upper bounds. The implementation uses the primal affine interior point method at each approximation step. We develop special features to speed up each step and to evaluate the gap. Empirical study of problems of size up to 198 variables and 99 constraints indicates that the procedure is very efficient and all problems tested were terminated after 171 interior point iterations. The procedure used in the implementation is proved to converge when the objective is strongly convex.Supported in part by the Office of Naval Research under Grant No. N00014-88-K-0377 and Grant No. ONR N00014-91-J-1241.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号