共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
采用全矢量有限元方法进行光纤设计优化,得到横截面上失去两层空气洞的双芯光子晶体光纤,可用于液压传感.优化的双芯光子晶体光纤的模场半径和数值孔径与单模光纤基本一致,在优化的双芯光子晶体光纤和单模光纤之间有一个相对较低的熔接损耗.计算结果表明由模场半径和数值孔径导致的不匹配造成的总共损耗可低至0.026dB,低于传统光子晶体光纤和单模光纤0.1dB的直接熔接损耗.对基于20cm双芯光子晶体光纤的液压传感器的性能进行研究,结果表明在0~500MPa量程内的灵敏度为-1.6pm/MPa. 相似文献
5.
6.
7.
8.
9.
研制了一种基于掺Yb3+的双包层大模场面积偏振光子晶体光纤的耗散孤子锁模激光器.利用数值模拟分析了光纤激光器中耗散孤子动力学过程,与全正色散锁模激光器相比,脉冲窄化机理更加丰富,半导体可饱和吸收镜(SESAM)的非线性吸收,啁啾脉冲的光谱滤波以及光纤的增益色散同时起作用,这些因素使耗散孤子锁模更加容易实现,并且稳定运行.其中,光谱滤波的耗散过程是稳定锁模机制的主导因素,滤波片能够在频域和时域同时窄化脉冲,并且去除脉冲啁啾,限制脉冲在腔内始终小于1ps.在实验上实现了无色散补偿腔中直接输出脉冲宽度777fs,最高平均功率达到1W,重复频率48·27MHz,对应单脉冲能量20nJ的飞秒激光. 相似文献
10.
11.
Shuguang Li Yanfeng Li Yuanyuan Zhao Guiyao Zhou Ying Han Lantian Hou 《Optics & Laser Technology》2008,40(4):663-667
In order to simply design a highly birefringent photonic crystal fiber (HB-PCF), we numerically simulated the correlation between the birefringence and the structural parameter of photonic crystal fiber with square-lattice or triangle-lattice air-holes by using multipole method. It is shown that the phase birefringence B(λ) and the group birefringence G(λ) can be modulated by the structure parameter of normalized wavelength λ/Λ and the relative air-hole size d/Λ. Numerical results show very high phase and group birefringence of the order of 10−2. The group birefringence becomes negative in the region where phase birefringence increases with an increase in normalized wavelength that does not appear in traditional highly birefringent fibers. 相似文献
12.
Jingyuan Wang Chun Jiang Weisheng Hu Mingyi Gao Hongliang Ren 《Optics & Laser Technology》2007,39(5):913-917
In this paper, we investigate the dispersion and polarization properties of photonic crystal fiber with one ring or more rings of elliptical air-holes using plane-wave expansion (PWE) method. By introducing three rings of elliptical air-holes, PCF with ultra-low and ultra-flattened dispersion is designed and a total dispersion curve between ±0.5 ps/nm/km from 1315 to 1855 nm wavelength range is demonstrated. Furthermore, the polarization property of these elliptical air-hole-containing PCFs is analyzed and the variation of the birefringence with the area and ellipticity of the elliptical air-holes are discussed. 相似文献
13.
14.
Bhawana Dabas 《Optics Communications》2010,283(7):1331-1337
In this paper, we report a chalcogenide As2Se3 glass photonic crystal fiber (PCF) for dispersion compensating application. We have used the improved fully vectorial effective index method (IFVEIM) for comparing the dispersion properties (negative and zero dispersion) and effective area in hexagonal and square lattice of As2Se3 glass PCF using different wavelength windows. It has been demonstrated that due to their negative dispersion parameter and negative dispersion slope in wavelength range 1.2-2.5 μm, both lattice structures of As2Se3 glass PCFs, with pitch (Λ = 2 μm), can be used as dispersion compensating fibers. Further, design parameters have been obtained to achieve zero dispersion in these fibers. It is also shown that As2Se3 glass PCF provides much higher negative dispersion compared to silica PCF of the same structure, in wavelength range 1.25-1.6 μm and hence such PCF have high potential to be used as a dispersion compensating fiber in optical communication systems. 相似文献
15.
A novel photonic crystal fiber (PCF) based on a four-hole unit is proposed in order to meet the requirements of high birefringence, negative dispersion and confinement loss in fiber-optic communication. The proposed design has been simulated based on the full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Analysis results show that the proposed PCF can achieve a high birefringence to the order of 10−2 at the wavelength of 1.55 μm, a large negative dispersion over a wide wavelength range and confinement losses lower than 10−9 dB/m simultaneously, which has important applications in polarization-maintaining (PM) fibers, single-polarization single-mode (SPSM) fibers, dispersion compensation fibers and so on. 相似文献
16.
A gain and gain-flatness improved L-band dual-pass Raman fiber amplifier (RFA) utilizing a photonic crystal fiber (PCF) as gain medium is demonstrated. By introducing complementary gain spectra of typical forward and backward pumping single-pass RFA using the same PCF, we finally achieve average net gain level of 22.5 dB with a ±0.8 dB flattening gain in 20-nm bandwidth from 1595 nm to 1615 nm, which is rare in RFAs with only one single pump and no flattening filter. Compared with the single-pass pump configurations, gain level, flatness and bandwidth are greatly improved by using the dual-pass amplification configuration. The limitation of this configuration caused by multi-path interference (MPI) noise and stimulated Brillouin scattering (SBS) is also discussed. 相似文献
17.
Scaling of Yb-doped photonic crystal fiber to 200 μm core diameter for high beam quality laser output
下载免费PDF全文

The rare earth-doped active fibers not only have ten thousands of square-micron core-area but also deliver a laser with near-diffraction-limited beam quality. However, they have been studied little. In this paper, we design a 200-μm-corediameter Yb~(3+)-doped photonic crystal fiber with a large pitch in the air-hole cladding region. Simulations demonstrate that only fundamental mode(FM) with a mode field area(MFA) of ~ 28000 μm~2 can be amplified and propagated at the gain saturation, and the beam quality M~2 is about 1.5. It is predicted that almost 105 m J single-pulse energy is available from such a 1.5-meter-length fiber. 相似文献
18.
The gas sensing properties of index-guided photonic crystal fiber (PCF) with air-core are investigated via full-vector finite element method. The relationships between the gas sensing properties of index-guided PCF with air-core and the fiber parameters, including the fiber length and the operating wavelength, have been discussed. The simulations show that the gas sensing sensitivity of the fiber increases significantly as the diameter of the air holes increases, and it decreases with the holes pitch. Compared with the traditional PCF, there is a great improvement in the sensing properties of our design. The results are helpful for designing high performance PCF for gases or liquids sensing. 相似文献
19.
Hui ZQ 《光谱学与光谱分析》2011,31(10):2611-2617
研究了信号与泵浦光同向传输,在色散平坦高非线性光子晶体光纤中的多泵浦四波混频光谱增益特性,从光谱学的角度分析了泵浦光波长漂移,泵浦光偏振方向平行与正交,信号光相对于泵浦光偏振态失配,二者总功率对多泵浦四波混频光谱增益特性的影响,探讨了泵浦光数目对多泵浦四波混频光谱增益特性的冲击。研究发现在36.4 nm波长范围,二者偏振态匹配时多泵浦四波混频效果最好,同时,多泵浦四波混频效应对偏振极为敏感,若两束泵浦光偏振态垂直,则它们分别与信号光发生四波混频,反之,则两束泵浦光之间亦会发生四波混频作用,且在正交泵浦的前提下,信号光偏振方向变化会直接导致各闲频光增益大小发生变化;进一步指出当采用三束连续泵浦光时,同样可以在一定波长范围内实现多泵浦四波混频效应。这些研究对于开发基于光子晶体光纤中多泵浦四波混频效应工作的超快光子器件具有一定的指导意义。 相似文献
20.
设计了一种新型高双折射光子晶体光纤,即其包层引入椭圆形空气孔,且以三角晶格方式周期排列,纤芯引入亚波长尺寸(~0.16 μm)的微型双孔结构阵列.采用全矢量有限元法和各向异性完美匹配层边界条件分析了该型光子晶体光纤的双折射特性和色散特性,详细介绍了该光子晶体光纤在不同的椭圆率、椭圆归一化面积、微型双孔孔径、两小孔之间间距的情况下双折射和限制损耗随波长的变化曲线.模拟结果表明,通过同时在包层和纤芯引入非对称性,获得了较高的双折射(~10-3量级)和极低(~10-4 dB/km)的限制损耗.提供了一种新的光子晶体光纤设计方法,即通过同时在包层和纤芯引入新结构来同时获得高双折射和低损耗. 相似文献