首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared reflection absorption spectroscopy (IRRAS) and surface plasmon resonance (SPR) techniques have been employed to investigate human serum albumin (HSA) binding to binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA). At the air-water interface, the favorable electrostatic interaction between DPPC and DOMA leads to a dense chain packing. The tilt angle of the hydrocarbon chains decreases with increasing mole fraction of DOMA (X(DOMA)) in the monolayers at the surface pressure 30 mN/m: DPPC ( approximately 30 degrees ), X(DOMA) = 0.1 ( approximately 15 degrees ), and X(DOMA) = 0.3 ( approximately 0 degrees ). Negligible protein binding to the DPPC monolayer is observed in contrast to a significant binding to the binary monolayers. After HSA binding, the hydrocarbon chains at X(DOMA) = 0.1 undergo an increase in tilt angle from 15 degrees to 25 approximately 30 degrees , and the chains at X(DOMA) = 0.3 remain almost unchanged. The two components in the monolayers deliver through lateral reorganization, induced by the protein in the subphase, to form multiple interaction sites favorable for protein binding. The surfaces with a high protein affinity are created through the directed assembly of binary monolayers for use in biosensing.  相似文献   

2.
The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).  相似文献   

3.
In this work we have analyzed the structural and topographical characteristics of mixed monolayers formed by an adsorbed whey protein isolate (WPI) and a spread monoglyceride monolayer (monopalmitin or monoolein) on the previously adsorbed protein film. Measurements of the surface pressure (pi)-area (A) isotherm were obtained at 20 degrees C and at pH 7 for protein-adsorbed films from water in a Wilhelmy-type film balance. Since the surface concentration (1/A) is actually unknown for the adsorbed monolayer, the values were derived by assuming that the A values for adsorbed and spread monolayers were equal at the collapse point of the mixed film. The pi-A isotherm deduced for adsorbed WPI monolayer in this work is practically the same as that obtained directly by spreading. For WPI-monoglyceride mixed films, the pi-A isotherms for adsorbed and spread monolayers at pi higher than the equilibrium surface pressure of WPI are practically coincident, a phenomenon which may be attributed to the protein displacement by the monoglyceride from the interface. At lower surface pressures, WPI and monoglyceride coexist at the interface and the adsorbed and spread pi-A isotherms (i.e., the monolayer structure of the mixed films) are different. Monopalmitin has a higher capacity than monoolein for the displacement of protein from the air-water interface. However, some degree of interactions exists between proteins and monoglycerides and these interactions are higher for adsorbed than for spread films. The topography of the monolayer corroborates these conclusions.  相似文献   

4.
The aggregation of soluble, nontoxic amyloid beta (Abeta) peptide to beta-sheet containing fibrils is assumed to be a major step in the development of Alzheimer's disease. Interactions of Abeta with neuronal membranes could play a key role in the pathogenesis of the disease. Herein, we study the adsorption of synthetic Abeta peptide to DPPE and DMPE monolayers (dipalmitoyl- and dimyristoylphosphatidylethanolamine). Both lipids exhibit a condensed monolayer state at 20 degrees C and form a similar lattice. However, at low packing densities (at large area per molecule), the length of the acyl chains determines the phase behavior, therefore DPPE is fully condensed whereas DMPE exhibits a liquid-expanded state with a phase transition at approximately 5-6 mNm(-1). Adsorption of Abeta to DPPE and DMPE monolayers at low surface pressure leads to an increase of the surface pressure to approximately 17 mNm(-1). The same was observed during adsorption of the peptide to a pure air-water interface. Grazing incidence X-ray diffraction (GIXD) experiments show no influence of Abeta on the lipid structure. The adsorption kinetics of Abeta to a DMPE monolayer followed by IRRAS (infrared reflection absorption spectroscopy) reveals the phase transition of DMPE molecules from liquid-expanded to condensed states at the same surface pressure as for DMPE on pure water. These facts indicate no specific interactions of the peptide with either lipid. In addition, no adsorption or penetration of the peptide into the lipid monolayers was observed at surface pressures above 30 mNm(-1). IRRAS allows the measurement of the conformation and orientation of the peptide adsorbed to the air-water interface and to a lipid monolayer. In both cases, with lipids at surface pressures below 20 mNm(-1) and at the air-water interface, adsorbed Abeta has a beta-sheet conformation and these beta-sheets are oriented parallel to the interface.  相似文献   

5.
Crystalline monolayers of octadecylsulfonate amphiphiles (C18S) separated by hydrophilic guanidinium (G) spacer molecules were formed at the air-water interface at a surface coverage that was consistent with that expected for a fully condensed monolayer self-assembled by hydrogen bonding between the G ions and the sulfonate groups. The surface pressure-area isotherms reflected reinforcement of this monolayer by hydrogen bonding between the G ions and the sulfonate groups, and grazing incidence X-ray diffraction (GIXD) measurements, performed in-situ at the air-water interface, revealed substantial tilt of the alkyl hydrophobes (t = 49 degrees with respect to the surface normal), which allowed the close packing of the C18 chains needed for a stable crystalline monolayer. This property contrasts with behavior observed previously for monolayers of hexadecylbiphenylsulfonate (C16BPS) and G, which only formed crystallites upon compression, accompanied by ejection of the G ions from the air-water interface. Upon compression to higher surface pressures, GIXD revealed that the highly tilted (G)C18S monolayer crystallites transformed to a self-interdigitated (G)C18S crystalline multilayer accompanied by a new crystalline monolayer phase with slightly tilted alkyl chains and disordered sulfonate headgroups. This transformation was dependent on the rate of compression, suggesting kinetic limitations for the "zipper-like" transformation from the crystalline monolayer to the self-interdigitated (G)C18S crystalline multilayer.  相似文献   

6.
The interfacial behavior differences of two glutathione peroxidase isoforms have been investigated. The first isoform is the phospholipid-hydroperoxide glutathione peroxidase (EC 1.11.1.12) (GPx-4) isolated from rat testes and the second one is the cytosolic glutathione peroxidase (EC 1.11.1.9) (GPx-1) from bovine erythrocytes. Injected in the subphase buffer of a Langmuir trough, GPx-4 was able to adsorb quickly at the air-water interface whereas the GPx-1 was not. Then, the protein interaction with phospholipid monolayers was explored. Indeed, a monolayer of phospholipids containing a different number of polyunsaturated fatty acyl chains was prepared at the air-water interface. Under each kind of monolayer, the protein solution was injected and its adsorption was visualized by the measurement of successive pressure-area isotherms. We have, then, determined the molecular area increase due to the protein adsorption. It was found that the GPx-4 is adsorbed in each kind of monolayer tested whereas no molecular area increase was detected with the GPx-1. This indicates that the GPx-4 has a higher affinity for the interface, recovered or not by lipids, than the GPx-1. Moreover, the GPx-4 presents a different affinity for the phospholipid monolayers depending on the number of polyunsaturated fatty acyl chains.  相似文献   

7.
We show that two dips of an oxidized silicon substrate through a prepolymerized n-octadecylsiloxane monolayer at an air-water interface in a rapid succession produces periodic, linear striped patterns in film morphology extending over macroscopic area of the substrate surface. Langmuir monolayers of n-octadecyltrimethoxysilane were prepared at the surface of an acidic subphase (pH 2) maintained at room temperature (22 +/- 2 degrees C) under relative humidities of 50-70%. The substrate was first withdrawn at a high dipping rate from the quiescent aqueous subphase (upstroke) maintained at several surface pressures corresponding to a condensed monolayer state and lowered soon after at the same rate into the monolayer covered subphase (downstroke). The film structure and morphology were characterized using a combination of optical microscopy, imaging ellipsometry, and Fourier transform infrared spectroscopy. An extended striped pattern, perpendicular to the pushing direction of the second stroke, resulted for all surface pressures when the dipping rate exceeded a threshold value of 40 mm min(-1). Below this threshold value, uniform deposition characterizing formation of a bimolecular film was obtained. Under conditions that favored striped deposition during the downstroke through the monolayer-covered interface, we observed a periodic auto-oscillatory behavior of the meniscus. The stripes appear to be formed by a highly correlated reorganization and/or exchange of the first monolayer, mediated by the Langmuir monolayer at the air-water interface. This mechanism appears distinctly different from nanometer scale stripes observed recently in single transfers of phospholipid monolayers maintained near a phase boundary. The stripes further exhibit wettability patterns useful for spatially selective functionalization, as demonstrated by directed adsorptions of an organic dye (fluorescein) and an oil (hexadecane).  相似文献   

8.
Myoglobin binding to the binary monolayers composed of sodium hexadecylimino diacetate and hexadecanol at the air-water interface by means of metal coordination has been investigated using infrared reflection absorption spectroscopy (IRRAS). In the absence of Cu(2+), no myoglobin binding to the binary monolayers was observed. In the presence of Cu(2+), remarkable myoglobin binding to the binary monolayers resulted from the formation of ternary complexes of iminodiacetate (IDA)-Cu(2+)-surface histidine. Myoglobin-directed assemblies of the binary monolayers facilitated multivalent protein binding through lateral rearrangements of the IDA ligands and reorientations of the alkyl chains for enhanced protein binding. Myoglobin binding to and desorption from the binary monolayers could be readily controlled through metal coordination.  相似文献   

9.
Self-assembly and molecular recognition of the monolayers composed of an equimolar mixture of adenine- and thymine-functionalized nucleolipids at the air-water interface have been investigated in detail using surface pressure-molecular area isotherms and in situ infrared reflection absorption spectroscopy (IRRAS). Prior to molecular recognition, the adenine moieties in the monolayer were almost oriented on an end-on mode through π-stacking and hydrogen bonding interactions, and the C-C-C planes of the alkyl chains were preferentially oriented perpendicular to the water surface, while the thymine moieties in the monolayer were involved in hydrogen bonding almost with a flat-on orientation. On aqueous subphases containing complementary bases, no significant molecular recognition was observed for the monolayers of individual nucleolipids. In the monolayer of equimolar mixture, molecular recognition occurred between the adenine and thymine moieties through hydrogen bonding probably with the development of cyclic structures of adenine-thymine-adenine-thymine quartets. Although molecular recognition between the monolayer of thymine-functionalized nucleolipids and aqueous melamine took place through triple hydrogen bonds, no melamine binding to the monolayer of equimolar mixture was observed, which reflects the formation of the quartets in the mixed monolayers at the air-water interface. FTIR and small-angle X-ray diffraction (XRD) results of the corresponding Langmuir-Blodgett films support the hydrogen bonding recognition and molecular orientation.  相似文献   

10.
The chain orientation in the monolayers of amino-acid-derived Schiff base, 4-(4-dodecyloxy)-2-hydroxybenzylideneamino)benzoic acid (DSA), at the air-water interface has been determined using infrared reflection absorption spectroscopy (IRRAS). On pure water, a condensed monolayer is formed with the long axes of Schiff base segments almost perpendicular to the water surface. In the presence of metal ions (Ca2+, Co2+, Zn2+, Ni2+, and Cu2+) in the subphase, the monolayer is expanded and the long axes of the Schiff base segments are inclined with respect to the monolayer normal depending on metal ion. The monolayer thickness, which is an important parameter for quantitative determination of orientation of hydrocarbon chains, is composed of alkyl chains and salicylideneaniline portions for the DSA monolayers. The effective thickness of the Schiff base portions is roughly estimated in the combination of the IRRAS results and surface pressure-area isotherms for computer simulation, since the only two observable p- and s-polarized reflectance-absorbance (RA) values can be obtained. The alkyl chains with almost all-trans conformations are oriented at an angle of about 10 degrees for H2O, 15 degrees for Ca2+, 30 degrees for Co2+, 35 degrees -40 degrees for Zn2+, and 35 degrees -40 degrees for Ni2+ with respect to the monolayer normal. The chain segments linked with gauche conformers in the case of Cu2+ are estimated to be 40 degrees -50 degrees away from the normal.  相似文献   

11.
In this work, surface film balance and Brewster angle microscopy techniques have been used to analyze the structural characteristics (structure, topography, reflectivity, thickness, miscibility, and interactions) of hydrolysates from sunflower protein isolate (SPI) and dipalmitoylphosphatidylcholine (DPPC) mixed monolayers spread on the air-water interface. The degree of hydrolysis (DH) of SPI, low (5.62%), medium (23.5%), and high (46.3%), and the protein/DPPC mass fraction were analyzed as variables. The structural characteristics of the mixed monolayers deduced from the surface pressure (pi)-area (A) isotherms depend on the interfacial composition and degree of hydrolysis. At surface pressures lower than the equilibrium surface pressure of SPI hydrolysate (pi(e)(SPI hydrolysate)), both DPPC and protein are present in the mixed monolayer. At higher surface pressures (at pi > pi(e)(SPI hydrolysate)), collapsed protein residues may be displaced from the interface by DPPC molecules. The differences observed between pure SPI hydrolysates and DPPC in reflectivity (I) and monolayer thickness during monolayer compression have been used to analyze the topographical characteristics of SPI hydrolysates and DPPC mixed monolayers at the air-water interface. The topography, reflectivity, and thickness of mixed monolayers confirm at microscopic and nanoscopic levels the structural characteristics deduced from the pi-A isotherms.  相似文献   

12.
The monolayers of stearic acid at the air-water interface on pure water and ion-containing subphases have been studied using infrared reflection-absorption spectroscopy. In the presence of Co(2+), Zn(2+), and Pb(2+), ordered hydrocarbon chains and hexagonal subcell structure remain almost unchanged in comparison with those for the monolayer on pure water at the surface pressure of 20 m/Nm. In the cases of Co(2+) and Zn(2+), the H-bonded monodentate and unsymmetric bidentate chelating structure within the headgroups were formed, and in the case of Pb(2+), three types of structures, bidentate chelating, unsymmetric chelating, and bidentate bridging coordinations, were formed. The hydrocarbon chains in the monolayers are uniaxially oriented at a tilt angle of approximately 0 degrees with respect to the surface normal in contrast to a tilt angle of approximately 20 degrees on pure water surface at 20 m/Nm by the computer simulation of theoretical calculation to experimental data. In the presence of Ag(+), multilayers were developed with the highly ordered hydrocarbon chains in a triclinic subcell structure and a bidentate bridging structure within the headgroups. The multilayers were composed of three monolayers and the hydrocarbon chains in each monolayer were oriented at an angle of approximately 30 degrees away from the surface normal with their C-C-C planes almost perpendicular to the water surface.  相似文献   

13.
Phospholipid monolayers adsorbed at an air-water interface are model cell membranes and have been used in this work to study interactions with blood-clotting proteins. Factor I (non-membrane binding) was used as a control protein, and its association with L-alpha-dipalmitoylphosphatidylcholine Langmuir monolayers was compared to factor VII, a membrane-binding protein. Fluorescence micrographs indicated that factor I penetration of the lipid monolayers in the phase transition region occurred extensively, causing condensation of the lipid film. The association of factor I with phospholipid monolayers was deemed nonspecific. Factor VII was shown to associate with the periphery of lipid domains in the absence of calcium ions, causing flattening of domain edges. In the presence of calcium, factor VII induced expansion of the lipid monolayer. This effect is a specific interaction attributed to exposure of hydrophobic residues upon calcium binding, followed by protein association with lipid hydrocarbon chains. Copyright 2001 Academic Press.  相似文献   

14.
Vibrational sum frequency generation (SFG) spectroscopy was applied to study the phase transitions of the mixed monolayers of l-alpha-distearoyl phosphatidylethanolamine (DSPE) and DSPE covalently coupled with poly(ethylene oxide) at the amino head group (DSPE-EO(45), DSPE with 45 ethylene oxide monomers) at the air-water interface. The SFG spectra were measured for the mixed monolayers with the mole fractions of DSPE-EO(45) of 0, 1.3, 4.5, 9.0, 12.5, and 16.7% at the surface pressures of 5, 15, and 35 mN/m. The monolayer compression isotherms indicated that the mixed monolayers at 5, 15, are 35 mN/m are mainly in the so-called "pancake", "mushroom", and "brush" states, respectively. The SFG spectra in the OH stretching vibration region give rise to SFG bands near 3200 and 3400 cm(-1). The mean molecular amplitude of the former band due to the OH stretching of the "icelike" water molecules associated mainly with the hydrophilic poly(ethylene oxide) (PEO) chains, exhibits appreciable decrease on compression of the mixed monolayers from 5 to 15 mN/m. The result corroborates the model for the pancake-mushroom transition, which presumes the dissolution of the PEO chains from the air-water interface to the water subphase. Further compression of the mixed monolayers to 35 mN/m causes a slight decrease of the line amplitude, which can be explained by considering a squeezing out of water molecules from the hydrophilic groups of DSPE-EO(45) in the brush state, where the PEO chains strongly interact with each other to form a tight binding state of the hydrophilic groups. The relative intensities of the SFG bands due to the CH3 asymmetric and symmetric vibrations were used to estimate the tilt angles of the terminal methyl group of DSPE, indicating that the angle increases with increasing the mole fraction of DSPE-EO(45). The angles almost saturate at the mole fraction larger than 10%, the saturation angle being nearly 90 degrees at 5 mN/m, ca. 60 degrees at 15 mN/m, and ca. 47 degrees at 35 mN/ m. Then, the introduction of the hydrophilic PEO head group causes a large tilting of the alkyl groups of DEPE in the mixed monolayers.  相似文献   

15.
To study the influence of the head group in the properties of the mixed monolayers adsorbed at the air-water interface, the surface tension and surface potential of binary mixtures of surfactant have been determined as a function of the surfactant composition. Experiments were carried out with anionic-zwitterionic sodium dodecyl sulfate and dodecyl dimethyl ammoniopropane sulfonate (SDS/DDPS), and cationic-zwitterionic dodecyl trimethylammonium bromide and dodecyl dimethyl ammoniopropane sulfonate (DTAB/DDPS), and dodecyl trimethylammonium bromide and tetradecyl dimethyl ammoniopropane sulfonate (DTAB/TDPS). It was shown that mixed monolayers of cationic-zwitterionic surfactant exhibit small negative deviations of ideal behavior, whereas for SDS/DDPS monolayers show strong negative deviation from the ideality. Deviations of ideal behavior are interpreted by regular solution theory. The surface potential values agree very well with the concentration of the ionic component at the interface. The dynamic surface tension values show that the adsorption kinetics on the interface is a diffusion-controlled process. In monolayers with significant deviation of the ideal behavior, anionic-zwitterionic, there is some evidence of intermolecular attractions after diffusion of both surfactants at the interface.  相似文献   

16.
We studied the interaction of the alpha-helical peptide acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)) with tethered bilayer lipid membranes (tBLM) and lipid monolayers formed at an air-water interface. The interaction of L(24) with tBLM resulted in adsorption of the peptide to the surface of the bilayer, characterized by a binding constant K(c)=2.4+/-0.6 microM(-1). The peptide L(24) an induced decrease of the elasticity modulus of the tBLM in a direction perpendicular to the membrane surface, E(radial). The decrease of E(radial) with increasing peptide concentration can be connected with a disordering effect of the peptide to the tBLM structure. The pure peptide formed a stable monolayer at the air/water interface. The pressure-area isotherms were characterized by a transition of the peptide monolayer, which probably corresponds of the partial intercalation of the alpha-helixes at higher surface pressure. Interaction of the peptide molecules with lipid monolayers resulted in an increase of the mean molecular area of phospholipids both in the gel and liquid crystalline states. With increasing peptide concentration, the temperature of the phase transition of the monolayer shifted toward lower temperatures. The analysis showed that the peptide-lipid monolayer is not an ideally miscible system and that the peptide molecules form aggregates in the monolayer.  相似文献   

17.
UV-vis reflection spectroscopy has been used for proving in situ the organization of pure viologen and hybrid viologen tetracyanoquinodimethanide monolayers at the air-water interface. Other more classical measurements concerning Langmuir monolayers, including surface pressure-area and surface potential-area isotherms, are also provided. The organization of the viologen in the Langmuir monolayer was investigated upon the different states of compression, and the tilt angle of the viologen moieties with respect to the water surface was determined. A gradual transition of the viologen molecules from a flat orientation in the gas phase to a more tilted position with respect to the water surface in the condensed phases occurs. The addition of a tetracyanoquinodimethane (TCNQ) salt in the subphase leads to the penetration of TCNQ anions into the positively charged viologen monolayer forming a hybrid viologen tetracyanoquinodimethanide film where a charge-transfer interaction between the two moieties is observed. From a quantitative analysis of the reflection spectra, an organization model of these hybrid monolayers at the air-water interface is proposed, suggesting a parallel arrangement of viologen and TCNQ units with a 1:2 stoichiometry.  相似文献   

18.
Structural characteristics (structure, elasticity, topography, and film thickness) of dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) monolayers were determined at the air-water interface at 20 degrees C and pH values of 5, 7, and 9 by means of surface pressure (pi)-area (A) isotherms combined with Brewster angle microscopy (BAM) and atomic force microscopy (AFM). From the pi-A isotherms and the monolayer elasticity, we deduced that, during compression, DPPC monolayers present a structural polymorphism at the air-water interface, with the homogeneous liquid-expanded (LE) structure; the liquid-condensed structure (LC) showing film anisotropy and DPPC domains with heterogeneous structures; and, finally, a homogeneous structure when the close-packed film molecules were in the solid (S) structure at higher surface pressures. However, DOPC monolayers had a liquid-expanded (LE) structure under all experimental conditions, a consequence of weak molecular interactions because of the double bond of the hydrocarbon chain. DPPC and DOPC monolayer structures are practically the same at pH values of 5 and 7, but a more expanded structure in the monolayer with a lower elasticity was observed at pH 9. BAM and AFM images corroborate, at the microscopic and nanoscopic levels, respectively, the same structural polymorphism deduced from the pi-A isotherm for DPPC and the homogeneous structure for DOPC monolayers as a function of surface pressure and the aqueous-phase pH. The results also corroborate that the structural characteristics and topography of phospholipids (DPPC and DOPC) are highly dependent on the presence of a double bond in the hydrocarbon chain.  相似文献   

19.
The two-dimensional (2D) phases of fatty-acid monolayers (hexadecanoic, octadecanoic, eicosanoic, and docosanoic acids) have been studied at the interface of a nematic liquid crystal (LC) and water. When observed between crossed polarizers, the LC responds to monolayer structure owing to mesoscopic alignment of the LC by the adsorbed molecules. Similar to Langmuir monolayers at the air/water interface, the adsorbed monolayer at the nematic/water interface displays distinct thermodynamic phases. Observed are a 2D gas, isotropic liquid, and two condensed mesophases, each with a characteristic anchoring of the LC zenithal tilt and azimuth. By varying the monolayer temperature and surface concentration we observe reversible first-order phase transitions from vapor to liquid and from liquid to condensed. A temperature-dependent transition between two condensed phases appears to be a reversible swiveling transition in the tilt azimuth of the monolayer. Similar to monolayers at the air/water interface, the temperature of the gas/liquid/condensed triple-point temperature increased by about 10 degrees C for a two methylene group increase in chain length. However, the absolute value of the triple-point temperatures are depressed by about 40 degrees C compared to those of analogous monolayers at the air/water interface. We also observe a direct influence by the LC layer on the mesoscopic and macroscopic structure of the monolayer by analyzing the shapes and internal textures of gas domains in coexistence with a 2D liquid. An effective anisotropic line tension arises from elastic forces owing to deformation of the nematic director across phase boundaries. This results in the deformation of the domain from circular to elongated, with a distinct singularity. The LC elastic energy also gives rise to transition zones displaying mesoscopic realignment of the director tilt or azimuth between adjacent regions with a sudden change in anchoring.  相似文献   

20.
This work investigates the process of incorporation of a glycosylphosphatidyl inositol (GPI)-anchored alkaline phosphatase into Langmuir monolayers of dimyristoyl phosphatidic acid (DMPA). Three different methods of protein incorporation were assayed. When the protein solution was injected below the air–water interface after formation of the lipid monolayer a micro-heterogeneous distribution of alkaline phosphatase throughout the interface was observed. Adsorption kinetics studied by fluorescence microscopy, associated with surface pressure measurements, led to the proposition of a model in which the protein penetration is modulated by the surface packing of the monolayer and intermolecular interactions occurring between the phospholipid and the protein. At initial surface pressures higher than 20 mN m−1, the protein is quickly adsorbed on the interface and the lateral diffusion drives the alkyl chains to turn towards the air phase while the polypeptide moiety faces the aqueous subphase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号