首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The singlet ground ((approximate)X(1)Sigma1+) and excited (1Sigma-,1Delta) states of HCP and HPC have been systematically investigated using ab initio molecular electronic structure theory. For the ground state, geometries of the two linear stationary points have been optimized and physical properties have been predicted utilizing restricted self-consistent field theory, coupled cluster theory with single and double excitations (CCSD), CCSD with perturbative triple corrections [CCSD(T)], and CCSD with partial iterative triple excitations (CCSDT-3 and CC3). Physical properties computed for the global minimum ((approximate)X(1)Sigma+HCP) include harmonic vibrational frequencies with the cc-pV5Z CCSD(T) method of omega1=3344 cm(-1), omega2=689 cm(-1), and omega3=1298 cm(-1). Linear HPC, a stationary point of Hessian index 2, is predicted to lie 75.2 kcal mol(-1) above the global minimum HCP. The dissociation energy D0[HCP((approximate)X(1)Sigma+)-->H(2S)+CP(X2Sigma+)] of HCP is predicted to be 119.0 kcal mol(-1), which is very close to the experimental lower limit of 119.1 kcal mol(-1). Eight singlet excited states were examined and their physical properties were determined employing three equation-of-motion coupled cluster methods (EOM-CCSD, EOM-CCSDT-3, and EOM-CC3). Four stationary points were located on the lowest-lying excited state potential energy surface, 1Sigma- -->1A", with excitation energies Te of 101.4 kcal mol(-1) (1A"HCP), 104.6 kcal mol(-1)(1Sigma-HCP), 122.3 kcal mol(-1)(1A" HPC), and 171.6 kcal mol(-1)(1Sigma-HPC) at the cc-pVQZ EOM-CCSDT-3 level of theory. The physical properties of the 1A" state with a predicted bond angle of 129.5 degrees compare well with the experimentally reported first singlet state ((approximate)A1A"). The excitation energy predicted for this excitation is T0=99.4 kcal mol(-1) (34 800 cm(-1),4.31 eV), in essentially perfect agreement with the experimental value of T0=99.3 kcal mol(-1)(34 746 cm(-1),4.308 eV). For the second lowest-lying excited singlet surface, 1Delta-->1A', four stationary points were found with Te values of 111.2 kcal mol(-1) (2(1)A' HCP), 112.4 kcal mol(-1) (1Delta HPC), 125.6 kcal mol(-1)(2(1)A' HCP), and 177.8 kcal mol(-1)(1Delta HPC). The predicted CP bond length and frequencies of the 2(1)A' state with a bond angle of 89.8 degrees (1.707 A, 666 and 979 cm(-1)) compare reasonably well with those for the experimentally reported (approximate)C(1)A' state (1.69 A, 615 and 969 cm(-1)). However, the excitation energy and bond angle do not agree well: theoretical values of 108.7 kcal mol(-1) and 89.8 degrees versus experimental values of 115.1 kcal mol(-1) and 113 degrees. of 115.1 kcal mol(-1) and 113 degrees.  相似文献   

2.
In continuing pursuit of thermochemical accuracy to the level of 0.1 kcal mol(-1), the heats of formation of NCO, HNCO, HOCN, HCNO, and HONC have been rigorously determined using state-of-the-art ab initio electronic structure theory, including conventional coupled cluster methods [coupled cluster singles and doubles (CCSD), CCSD with perturbative triples (CCSD(T)), and full coupled cluster through triple excitations (CCSDT)] with large basis sets, conjoined in cases with explicitly correlated MP2-R12/A computations. Limits of valence and all-electron correlation energies were extrapolated via focal point analysis using correlation consistent basis sets of the form cc-pVXZ (X=2-6) and cc-pCVXZ (X=2-5), respectively. In order to reach subchemical accuracy targets, core correlation, spin-orbit coupling, special relativity, the diagonal Born-Oppenheimer correction, and anharmonicity in zero-point vibrational energies were accounted for. Various coupled cluster schemes for partially including connected quadruple excitations were also explored, although none of these approaches gave reliable improvements over CCSDT theory. Based on numerous, independent thermochemical paths, each designed to balance residual ab initio errors, our final proposals are DeltaH(f,0) ( composite function )(NCO)=+30.5, DeltaH(f,0) ( composite function )(HNCO)=-27.6, DeltaH(f,0) ( composite function )(HOCN)=-3.1, DeltaH(f,0) ( composite function )(HCNO)=+40.9, and DeltaH(f,0) ( composite function )(HONC)=+56.3 kcal mol(-1). The internal consistency and convergence behavior of the data suggests accuracies of +/-0.2 kcal mol(-1) in these predictions, except perhaps in the HCNO case. However, the possibility of somewhat larger systematic errors cannot be excluded, and the need for CCSDTQ [full coupled cluster through quadruple excitations] computations to eliminate remaining uncertainties is apparent.  相似文献   

3.
The ground (X (3)Sigma(-)) and first excited triplet (A (3)Pi) electronic states of diazocarbene (CNN) have been investigated systematically starting from the self-consistent-field theory and proceeding to the coupled cluster with single, double, and full triple excitations (CCSDT) method with a wide range of basis sets. While the linear X (3)Sigma(-) ground state of CNN has a real degenerate bending vibrational frequency, the A (3)Pi state of CNN is subject to the Renner-Teller effect and presents two distinct real vibrational frequencies along the bending coordinate. The bending vibrational frequencies of the A (3)Pi state were evaluated via the equation-of-motion coupled cluster (EOM-CC) techniques. The significant sensitivity to level of theory in predicting the ground-state geometry, harmonic vibrational frequencies, and associated infrared intensities has been attributed to the fact that the reference wave function is strongly perturbed by the excitations of 1pi-->3pi followed by a spin flip. At the highest level of theory with the largest basis set, correlation-consistent polarized valence quadruple zeta (cc-pVQZ) CCSDT, the classical X-A splitting (T(e) value) was predicted to be 68.5 kcal/mol (2.97 eV, 24 000 cm(-1)) and the quantum mechanical splitting (T(0) value) to be 69.7 kcal/mol (3.02 eV, 24 400 cm(-1)), which are in excellent agreement with the experimental T(0) values, 67.5-68.2 kcal/mol (2.93-2.96 eV, 23 600-23 900 cm(-1)). With the EOM-CCSD method the Renner parameter (epsilon) and averaged bending vibrational frequency (omega(2)) for the A (3)Pi state were evaluated to be epsilon=-0.118 and omega(2)=615 cm(-1), respectively. They are in fair agreement with the experimental values of epsilon=-0.07 and nu(2)=525 cm(-1).  相似文献   

4.
Previous experimental assignments of the fundamental vibrational frequencies of NCCO have been brought into question by subsequent unsuccessful attempts to observe IR signatures of this radical at these frequencies. Here we compute the fundamental vibrational frequencies by applying second-order vibrational perturbation theory to the complete quartic force field computed at the all-electron (AE) coupled cluster singles, doubles, and perturbative triples level [CCSD(T)] with the correlation-consistent, polarized core-valence quadruple-zeta (cc-pCVQZ) basis set, which has tight functions to correctly describe core correlation. The AE-CCSD(T)/cc-pCVQZ geometric parameters are r(e)(N-C)=1.1623 A, r(e)(C-C)=1.4370 A, r(e)(C-O)=1.1758 A, theta(e)(N-C-C)=168.55 degrees , and theta(e)(C-C-O)=132.22 degrees . Our CCSD(T)/cc-pCVQZ values of the characteristic stretching frequencies nu(1) and nu(2) are 2171 and 1898 cm(-1), respectively, in stark contrast to the experimentally derived values of 2093 and 1774 cm(-1). Finally, focal-point extrapolations using correlation-consistent basis sets cc-pVXZ (X=D,T,Q,5,6) and electron correlation treatments as extensive as full coupled cluster singles, doubles, and triples (CCSDT) with perturbative accounting of quadruple excitations [CCSDT(Q)] determine the vibrationless barrier to linearity of NCCO and the dissociation energy (D(0)) of NCCO-->NC+CO to be 8.4 and 26.5 kcal mol(-1), respectively. Using our precisely determined dissociation energy, we recommend a new 0 K enthalpy of formation for NCCO of 50.9+/-0.3 kcal mol(-1).  相似文献   

5.
The singlet electronic ground state isomers, X (1)Sigma(g) (+) (AlOAl D(infinityh)) and X (1)Sigma(+) (AlAlO C(infinitynu)), of dialuminum monoxide have been systematically investigated using ab initio electronic structure theory. The equilibrium structures and physical properties for the two molecules have been predicted employing self-consistent field (SCF) configuration interaction with single and double excitations (CISD), multireference CISD (MRCISD), coupled cluster with single and double excitations (CCSD), CCSD with perturbative triples [CCSD(T)], CCSD with iterative partial triple excitations (CCSDT-3 and CC3), and full triples (CCSDT) coupled cluster methods. Four correlation consistent polarized valence (cc-pVXZ) type basis sets were used. The AlAlO system is rather challenging theoretically. The two isomers are confirmed to have linear structures at all levels of theory. The symmetric isomer AlOAl is predicted to lie 81.9 kcal mol(-1) below the asymmetric isomer AlAlO at the cc-pV(Q+d)Z CCSD(T) level of theory. The predicted harmonic vibrational frequencies for the X (1)Sigma(g) (+) AlOAl molecule, omega(1)=517 cm(-1), omega(2)=95 cm(-1), and omega(3)=1014 cm(-1), are in good agreement with experimental values. The harmonic vibrational frequencies for the X (1)Sigma(+) AlAlO structure, omega(1)=1042 cm(-1), omega(2)=73 cm(-1), and omega(3)=253 cm(-1), presently have no experimental values with which to be compared. With the same methods the barrier heights for the isomerization AlOAl-->AlAlO and AlAlO-->AlOAl reactions were predicted to be 84.3 and 2.4 kcal mol(-1), respectively. The dissociation energies D(0) for AlOAl (X (1)Sigma(g) (+)) and AlAlO (X (1)Sigma(+))-->AlO (X (2)Sigma(+))+Al ((2)P) were determined to be 130.8 and 48.9 kcal mol(-1), respectively. Thus, both symmetric AlOAl (X (1)Sigma(g) (+)) and asymmetric AlAlO (X (1)Sigma(+)) isomers are expected to be thermodynamically stable with respect to the dissociation into AlO (X (2)Sigma(+)) + Al ((2)P) and kinetically stable for the isomerization reaction (AlAlO-->AlOAl) at sufficiently low temperatures.  相似文献   

6.
The heats of formation for the borane amines BH3NH3, BH2NH2, and HBNH, tetrahedral BH4-, and the BN molecule have been calculated by using ab initio molecular orbital theory. Coupled cluster calculations with single and double excitations and perturbative triples (CCSD(T)) were employed for the total valence electronic energies. Correlation consistent basis sets were used, up through the augmented quadruple-zeta, to extrapolate to the complete basis set limit. Core/valence, scalar relativistic, and spin-orbit corrections were included in an additive fashion to predict the atomization energies. Geometries were calculated at the CCSD(T) level up through at least aug-cc-pVTZ and frequencies were calculated at the CCSD(T)/aug-cc-pVDZ level. The heats of formation (in kcal/mol) at 0 K in the gas phase are Delta Hf(BH3NH3) = -9.1, Delta Hf(BH2NH2) = -15.9, Delta Hf(BHNH) = 13.6, Delta Hf(BN) = 146.4, and Delta Hf(BH4-) = -11.6. The reported experimental value for Delta Hf(BN) is clearly in error. The heat of formation of the salt [BH4-][NH4+](s) has been estimated by using an empirical expression for the lattice energy and the calculated heats of formation of the two component ions. The calculations show that both BH3NH3(g) and [BH4-][NH4+](s) can serve as good hydrogen storage systems which release H2 in a slightly exothermic process. The hydride affinity of BH3 is calculated to be 72.2 kcal/mol, in excellent agreement with the experimental value at 298 K of 74.2 +/- 2.8 kcal/mol.  相似文献   

7.
The C(3)H(5) potential energy surface (PES) encompasses molecules of great significance to hydrocarbon combustion, including the resonantly stabilized free radicals propargyl (plus H(2)) and allyl. In this work, we investigate the interconversions that take place on this PES using high level coupled cluster methodology. Accurate geometries are obtained using coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] combined with Dunning's correlation consistent quadruple-ζ basis set cc-pVQZ. The energies for these stationary points are then refined by a systematic series of computations, within the focal point scheme, using the cc-pVXZ (X = D, T, Q, 5, 6) basis sets and correlation treatments as extensive as coupled cluster with full single, double, and triple excitation and perturbative quadruple excitations [CCSDT(Q)]. Our benchmarks provide a zero-point vibrational energy (ZPVE) corrected barrier of 10.0 kcal mol(-1) for conversion of allene + H to propargyl + H(2). We also find that the barrier for H addition to a terminal carbon atom in allene leading to propenyl is 1.8 kcal mol(-1) lower than that for the addition to a central atom to form the allyl radical.  相似文献   

8.
The standard enthalpy of formation of FCO(2) (X (2)B(2)) was determined by a computational approach based on coupled cluster theory [CCSD(T)] with energies extrapolated to the basis-set limit, with additional corrections accounting for core-valence correlation, scalar relativity, spin-orbit coupling, and zero-point vibrational motions. Utilizing a variety of independent reaction schemes, our best estimate is Delta(f)H(o)(0)(FCO(2)) = -86.0 +/- 0.6 kcal mol(-1) [Delta(f)H(o)(298) )(FCO(2)) = -86.7 +/- 0.6 kcal mol(-1)], which is shown to be more accurate than previous theoretical and experimental values. The chosen computational procedure was also applied to HCO (X (2)A'), where we find excellent agreement with experiment, and to FCO (X (2)A'), where we recommend an improved value of Delta(f)H(o)(0)(FCO) = -42.1 +/- 0.5 kcal mol(-1) [ Delta(f)H(o)(298)(FCO) = -42.0 +/- 0.5 kcal mol(-1)]. Further theoretical results concern the C-F bond dissociation energy, electron affinity, ionization energy, first and second excitation energies in FCO(2), fluoride ion affinity of CO(2), and equilibrium geometries of the molecules treated presently. For FCO (X (2)A') we propose an improved equilibrium structure: r(e)(CF) = 132.5(2) pm, r(e)(CO) = 116.7(2) pm, and theta(e)(FCO) = 127.8(2)(o).  相似文献   

9.
Basis set convergence of correlation effects on molecular atomization energies beyond the coupled cluster with singles and doubles (CCSD) approximation has been studied near the one-particle basis set limit. Quasiperturbative connected triple excitations, (T), converge more rapidly than L(-3) (where L is the highest angular momentum represented in the basis set), while higher-order connected triples, T3-(T), converge more slowly--empirically, proportional to L(-5/2). Quasiperturbative connected quadruple excitations, (Q), converge smoothly as proportional to L(-3) starting with the cc-pVTZ basis set, while the cc-pVDZ basis set causes overshooting of the contribution in highly polar systems. Higher-order connected quadruples display only weak, but somewhat erratic, basis set dependence. Connected quintuple excitations converge very rapidly with the basis set, to the point where even an unpolarized double-zeta basis set yields useful numbers. In cases where fully iterative coupled cluster up to connected quintuples (CCSDTQ5) calculations are not an option, CCSDTQ(5) (i.e., coupled cluster up to connected quadruples plus a quasiperturbative connected quintuples correction) cannot be relied upon in the presence of significant nondynamical correlation, whereas CCSDTQ(5)(Lambda) represents a viable alternative. Connected quadruples corrections to the core-valence contribution are thermochemically significant in some systems. We propose an additional variant of W4 theory [A. Karton et al., J. Chem. Phys. 125, 144108 (2006)], denoted W4.4 theory, which is shown to yield a rms deviation from experimental atomization energies (active thermochemical tables, ATcT) of only 0.05 kcal/mol for systems for which ATcT values are available. We conclude that "3sigma 相似文献   

10.
The best technically feasible values for the triplet-singlet energy gap and the enthalpies of formation of the HCCl and CCl2 radicals have been determined through the focal-point approach. The electronic structure computations were based on high-level coupled cluster (CC) methods, up to quadruple excitations (CCSDTQ), and large-size correlation-consistent basis sets, ranging from aug-cc-pVDZ to aug-cc-pV6Z, followed by extrapolation to the complete basis set limit. Small corrections due to core correlation, relativistic effects, diagonal Born-Oppenheimer correction, as well as harmonic and anharmonic zero-point vibrational energy corrections have been taken into account. The final estimates for the triplet-singlet energy gap, T0(?), are 2170+/-40 cm-1 for HCCl and 7045+/-60 cm-1 for CCl2, favoring the singlet states in both cases. Complete quartic force fields in internal coordinates have been computed for both the X and ? states of both radicals at the frozen-core CCSD(T)/aug-cc-pVQZ level. Using these force fields vibrational energy levels of {HCCl, DCCl, CCl2} up to {6000, 5000, 7000} cm-1 were calculated both by second-order vibrational perturbation theory (VPT2) and variationally. These results, especially the variational ones, show excellent agreement with the experimentally determined energy levels. The enthalpies of formation of HCCl (X1A') and CCl2(X1A1), at 0 K, are 76.28+/-0.20 and 54.54+/-0.20 kcal mol-1, respectively.  相似文献   

11.
Accurate barriers for the 1,3-dipolar cycloadditions of ozone with acetylene and ethylene have been determined via the systematic extrapolation of ab initio energies within the focal point approach of Allen and co-workers. Electron correlation has been accounted for primarily via coupled cluster theory, including single, double, and triple excitations, as well as a perturbative treatment of connected quadruple excitations [CCSD, CCSD(T), CCSDT, and CCSDT(Q)]. For the concerted [4 + 2] cycloadditions, the final recommended barriers are DeltaH(0K) = 9.4 +/- 0.2 and 5.3 +/- 0.2 kcal mol(-1) for ozone adding to acetylene and ethylene, respectively. These agree with recent results of Cremer et al. and Anglada et al., respectively. The reaction energy for O3 + C2H2 exhibits a protracted convergence with respect to inclusion of electron correlation, with the CCSDT/cc-pVDZ and CCSDT(Q)/cc-pVDZ values differing by 2.3 kcal mol-1. Recommended enthalpies of formation (298 K) for cycloadducts 1,2,3-trioxole and 1,2,3-trioxolane are +32.8 and -1.6 kcal mol(-1), respectively. Popular composite ab initio approaches [CBS-QB3, CBS-APNO, G3, G3B3, G3(MP2)B3, G4, G4(MP3), and G4(MP2)] predict a range of barrier heights for these systems. The CBS-QB3 computed barrier for ozone and acetylene, DeltaH(0K) = 4.4 kcal mol(-1), deviates by 5 kcal mol(-1) from the focal point value. CBS-QB3 similarly underestimates the barrier for the reaction of ozone and ethylene, yielding a prediction of only 0.7 kcal mol(-1). The errors in the CBS-QB3 results are significantly larger than mean errors observed in application to the G2 test set. The problem is traced to the nontransferability of MP2 basis set effects in the case of these reaction barriers. The recently published G4 and G4(MP2) approaches perform substantially better for O3 + C2H2, predicting enthalpy barriers of 9.0 and 8.4 kcal mol(-1), respectively. For the prediction of these reaction barriers, the additive corrections applied in the majority of the composite approaches considered lead to worse agreement with the reference focal point values than would be obtained relying only on single point energies evaluated at the highest level of theory utilized within each composite method.  相似文献   

12.
Water hexamers provide a critical testing ground for validating potential energy surface predictions because they contain structural motifs not present in smaller clusters. We tested the ability of 11 density functionals (four of which are local and seven of which are nonlocal) to accurately predict the relative energies of a series of low-lying water hexamers, relative to the CCSD(T)/aug'-cc-pVTZ level of theory, where CCSD(T) denotes coupled cluster theory with an interative treatment of single and double excitations and a quasi-perturbative treatment of connected triple excitations. Five of the density functionals were tested with two different basis sets, making a total of 16 levels of density functional theory (DFT) tested. When single-point energy calculations are carried out on geometries obtained with second-order M?ller-Plesset perturbation theory (MP2), only three density functionals, M06-L, M05-2X, and M06-2X, are able to correctly predict the relative energy ordering of the hexamers. These three functionals predict that the range of energies spanned by the six isomers is 3.2-5.6 kcal/mol, whereas the other eight functionals predict ranges of 1.0-2.4 kcal/mol; the benchmark value for this range is 3.1 kcal/mol. When the hexamers are optimized at each level of theory, all methods are able to reproduce the MP2 geometries well for all isomers except the boat and bag isomers, and DFT optimization changes the energy ordering for seven of the 16 methods tested. The addition of zero-point energy changes the energy ordering for all of the density functionals studied except for M05-2X and M06-2X. The variation in relative energies predicted by the different methods highlights the necessity for exercising caution in the choice of density functionals used in future studies. Of the 11 density functionals tested, the most accurate results for energies were obtained with the PWB6K, MPWB1K, and M05-2X functionals.  相似文献   

13.
Parametrization of the two-electron reduced density matrix (2-RDM) has recently enabled the direct calculation of electronic energies and 2-RDMs at the computational cost of configuration interaction with single and double excitations. While the original Kollmar energy functional yields energies slightly better than those from coupled cluster with single-double excitations, a general family of energy functionals has recently been developed whose energies approach those from coupled cluster with triple excitations [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)]. In this paper we test the parametric 2-RDM method with one of these improved functionals through its application to the conversion of hydrogen peroxide to oxywater. Previous work has predicted the barrier from oxywater to hydrogen peroxide with zero-point energy correction to be 3.3-to-3.9 kcal/mol from coupled cluster with perturbative triple excitations [CCSD(T)] and -2.3 kcal/mol from complete active-space second-order perturbation theory (CASPT2) in augmented polarized triple-zeta basis sets. Using a larger basis set than previously employed for this reaction-an augmented polarized quadruple-zeta basis set (aug-cc-pVQZ)-with extrapolation to the complete basis-set limit, we examined the barrier with two parametric 2-RDM methods and three coupled cluster methods. In the basis-set limit the M parametric 2-RDM method predicts an activation energy of 2.1 kcal/mol while the CCSD(T) barrier becomes 4.2 kcal/mol. The dissociation energy of hydrogen peroxide to hydroxyl radicals is also compared to the activation energy for oxywater formation. We report energies, optimal geometries, dipole moments, and natural occupation numbers. Computed 2-RDMs nearly satisfy necessary N-representability conditions.  相似文献   

14.
The equilibrium structures and physical properties of the X (1)sigma(+) linear electronic states, linear excited singlet and triplet electronic states of hydroboron monoxide (HBO) (A (1)sigma(-), B (1)delta, a (3)sigma(+), and b (3)delta) and boron hydroxide (BOH) (A (1)sigma(+), B (1)Pi, and b (3)Pi), and their bent counterparts (HBO a (3)A('), b (3)A("), A (1)A("), B (1)A(') and BOH X (1)A('), b (3)A('), c (3)A("), A (1)A('), B (1)A('), C (1)A(")) are investigated using excited electronic state ab initio equation-of-motion coupled-cluster (EOM-CC) methods. A new implementation of open-shell EOM-CC including iterative partial triple excitations (EOM-CC3) was tested. Coupled-cluster wave functions with single and double excitations (CCSD), single, double, and iterative partial triple excitations (CC3), and single, double, and full triple excitations (CCSDT) are employed with the correlation-consistent quadruple and quintuple zeta basis sets. The linear HBO X (1)sigma(+) state is predicted to lie 48.3 kcal mol(-1) (2.09 eV) lower in energy than the BOH X (1)sigma(+) linear stationary point at the CCSDT level of theory. The CCSDT BOH barrier to linearity is predicted to lie 3.7 kcal mol(-1) (0.16 eV). With a harmonic zero-point vibrational energy correction, the HBO X (1)sigma(+)-BOH X (1)A(') energy difference is 45.2 kcal mol(-1) (1.96 eV). The lowest triplet excited electronic state of HBO, a (3)A('), has a predicted excitation energy (T(e)) of 115 kcal mol(-1) (4.97 eV) from the HBO ground state minimum, while the lowest-bound BOH excited electronic state, b (3)A('), has a T(e) of 70.2 kcal mol(-1) (3.04 eV) with respect to BOH X (1)A('). The T(e) values predicted for the lowest singlet excited states are A (1)A(")<--X (1)sigma(+)=139 kcal mol(-1) (6.01 eV) for HBO and A (1)A(')<--X (1)A(')=102 kcal mol(-1) (4.42 eV) for BOH. Also for BOH, the triplet vertical transition energies are b (3)A(')<--X (1)A(')=71.4 kcal mol(-1) (3.10 eV) and c (3)A(")<--X (1)A(')=87.2 kcal mol(-1) (3.78 eV).  相似文献   

15.
Theoretical investigations of three equilibrium structures and two associated isomerization reactions of the GeCH(2) - HGeCH - H(2)GeC system have been systematically carried out. This research employed ab initio self-consistent-field (SCF), coupled cluster (CC) with single and double excitations (CCSD), and CCSD with perturbative triple excitations [CCSD(T)] wave functions and a wide variety of correlation-consistent polarized valence cc-pVXZ and cc-pVXZ-DK (where X = D, T, Q) basis sets. For each structure, the total energy, geometry, dipole moment, harmonic vibrational frequencies, and infrared intensities are predicted. Complete active space SCF (CASSCF) wave functions are used to analyze the effects of correlation on physical properties and energetics. For each of the equilibrium structures, vibrational second-order perturbation theory (VPT2) has been utilized to obtain the zero-point vibration corrected rotational constants, centrifugal distortion constants, and fundamental vibrational frequencies. The predicted rotational constants and anharmonic vibrational frequencies for 1-germavinylidene are in good agreement with available experimental observations. Extensive focal point analyses, including CCSDT and CCSDT(Q) energies and basis sets up to quintuple zeta, are used to obtain complete basis set (CBS) limit energies. At all levels of theory employed in this study, the global minimum of the GeCH(2) potential energy surface (PES) is confirmed to be 1-germavinylidene (GeCH(2), 1). The second isomer, germyne (HGeCH, 2) is predicted to lie 40.4(41.1) ± 0.3 kcal mol(-1) above the global minimum, while the third isomer, 2-germavinylidene (H(2)GeC, 3) is located 92.3(92.7) ± 0.3 kcal mol(-1) above the global minimum; the values in parentheses indicate core-valence and zero-point vibration energy (ZPVE) corrected energy differences. The barriers for the forward (1→2) and reverse (2→1) isomerization reactions between isomers 1 and 2 are 48.3(47.7) ± 0.3 kcal mol(-1) and 7.9(6.6) ± 0.3 kcal mol(-1), respectively. On the other hand, the barriers of the forward (2→3) and reverse (3→2) isomerization reactions between isomers 2 and 3 are predicted to be 55.2(53.2) ± 0.3 kcal mol(-1) and 3.3(1.6) ± 0.3 kcal mol(-1), respectively.  相似文献   

16.
The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative stability to ΔE(ZPE) = (0.51 ± 0.08) kcal mol(-1). A scheme is also suggested to model the full-dimensional isomerization potential-energy surface using a quadratic expansion that is parametrically represented by a Fourier analysis in the torsion angle. The method illustrated at the raw and complete basis-set limit coupled-cluster levels can provide a valuable tool for a future analysis of the available (incomplete thus far) experimental rovibrational data.  相似文献   

17.
Accurate standard enthalpies of formation for allene, propyne, and four C3H3 isomers involved in soot formation mechanisms have been determined through systematic focal point extrapolations of ab initio energies. Auxiliary corrections have been applied for anharmonic zero-point vibrational energy, core electron correlation, the diagonal Born-Oppenheimer correction (DBOC), and scalar relativistic effects. Electron correlation has been accounted for via second-order Z-averaged perturbation theory (ZAPT2) and primarily through coupled-cluster theory, including single, double, and triple excitations, as well as a perturbative treatment of connected quadruple excitations [ROCCSD, ROCCSD(T), ROCCSDT, and UCCSDT(Q)]. The correlation-consistent hierarchy of basis sets, cc-pVXZ (X = D, T, Q, 5, 6), was employed. The CCSDT(Q) corrections do not exceed 0.12 kcal mol(-)1 for the relative energies of the systems considered here, indicating a high degree of electron correlation convergence in the present results. Our recommended values for the enthalpies of formation are as follows: Delta(f)H(o)(0)(propargyl) = 84.76, Delta(f)H(o)(0) (1-propynyl) = 126.60, Delta(f)H(o)(0) (cycloprop-1-enyl) = 126.28, Delta(f)H(o)(0)(cycloprop-2-enyl) = 117.36, Delta(f)H(o)(0)(allene) = 47.41, and Delta(f)H(o)(0)(propyne) = 46.33 kcal mol(-1), with estimated errors no larger than 0.3 kcal mol(-1). The corresponding C3H3 isomerization energies are about 1 kcal mol(-1) larger than previous coupled-cluster results and several kcal mol(-1) below those previously obtained using density functional theory.  相似文献   

18.
A systematic theoretical treatment is performed with highly correlated ab initio theoretical methods to establish the structural nature of the C state of NO2. We predict the C state to have an asymmetric structure (point group C(s)). Spin-restricted and spin-unrestricted configuration interaction (CISD), coupled cluster [CCSD and CCSD(T)], multireference complete active space self-consistent field (CASSCF), and internally contracted multireference configuration interaction (ICMRCI) methods were used in conjunction with very large correlation-consistent polarized valence zeta cc-pVXZ and aug-cc-pVXZ [X = T, Q, 5] basis sets. The asymmetric C 2A' state is predicted to lie T(e) = 47.5 kcal/mol (2.06 eV, 16,600 cm(-1)) above the X 2A1 state at the aug-cc-pV5Z/UCCSD(T) level of theory, with T0 = 46.0 kcal/mol (2.00 eV, 16,100 cm(-1)), in good agreement with the experimental values of 46.77 kcal/mol (2.028 eV, 16,360 cm(-1)) by Weaver and 46.42 kcal/mol (2.013 eV, 16,234 cm(-1)) by Aoki. The symmetric structure (in C(2v) symmetry) with re(NO) = 1.274 A and theta(e) (ONO) = 109.9 degrees is a transition state between the two equivalent asymmetric (in C(s) symmetry) structures and is located only 1.53 kcal/mol (0.066 eV, 540 cm(-1)) above the asymmetric structure. The asymmetric structure is predicted to have structural parameters r(e)(NOl) = 1.489 A, r(e)(NOs) = 1.169 A, and theta(e)(ONO) = 109.7 degrees with the same method, aug-cc-pV5Z/UCCSD(T). The averaged NO bond distance is 1.329 A, and the difference between the two NO bond distances is 0.320 A. The three harmonic vibrational frequencies for the C 2A' state are 1656 (in-phase stretch), 759 (bend), and 378 (out- of-phase stretch) cm(-1). While these theoretical results further corroborate the previous predictions concerning the asymmetric nature of the C state, there remains discrepancy between the theoretical and experimental symmetric stretching mode omega1 (1656 and 923 cm(-1), respectively). It is possible, however, that this disagreement could be resolved by a reassignment of the corresponding lines in the experimental spectrum, though additional vibronic simulations of the spectrum are required to confirm this proposition.  相似文献   

19.
We report diffusion quantum Monte Carlo (DMC) calculations of the equilibrium dissociation energy D(e) of the water dimer. The dissociation energy measured experimentally, D(0), can be estimated from D(e) by adding a correction for vibrational effects. Using the measured dissociation energy and the modern value of the vibrational energy Mas et al., [J. Chem. Phys. 113, 6687 (2000)] leads to D(e)=5.00+/-0.7 kcal mol(-1), although the result Curtiss et al., [J. Chem. Phys. 71, 2703 (1979)] D(e)=5.44+/-0.7 kcal mol(-1), which uses an earlier estimate of the vibrational energy, has been widely quoted. High-level coupled cluster calculations Klopper et al., [Phys. Chem. Chem. Phys. 2, 2227 (2000)] have yielded D(e)=5.02+/-0.05 kcal mol(-1). In an attempt to shed new light on this old problem, we have performed all-electron DMC calculations on the water monomer and dimer using Slater-Jastrow wave functions with both Hartree-Fock approximation (HF) and B3LYP density functional theory single-particle orbitals. We obtain equilibrium dissociation energies for the dimer of 5.02+/-0.18 kcal mol(-1) (HF orbitals) and 5.21+/-0.18 kcal mol(-1) (B3LYP orbitals), in good agreement with the coupled cluster results.  相似文献   

20.
A coupled cluster composite approach has been used to accurately determine the spectroscopic constants, bond dissociation energies, and heats of formation for the X1(2)II(3/2) states of the halogen oxides ClO, BrO, and IO, as well as their negative ions ClO-, BrO-, and IO-. After determining the frozen core, complete basis set (CBS) limit CCSD(T) values, corrections were added for core-valence correlation, relativistic effects (scalar and spin-orbit), the pseudopotential approximation (BrO and IO), iterative connected triple excitations (CCSDT), and iterative quadruples (CCSDTQ). The final ab initio equilibrium bond lengths and harmonic frequencies for ClO and BrO differ from their accurate experimental values by an average of just 0.0005 A and 0.8 cm-1, respectively. The bond length of IO is overestimated by 0.0047 A, presumably due to an underestimation of molecular spin-orbit coupling effects. Spectroscopic constants for the spin-orbit excited X2(2)III(1/2) states are also reported for each species. The predicted bond lengths and harmonic frequencies for the closed-shell anions are expected to be accurate to within about 0.001 A and 2 cm-1, respectively. The dissociation energies of the radicals have been determined by both direct calculation and through use of negative ion thermochemical cycles, which made use of a small amount of accurate experimental data. The resulting values of D0, 63.5, 55.8, and 54.2 kcal/mol for ClO, BrO, and IO, respectively, are the most accurate ab initio values to date, and those for ClO and BrO differ from their experimental values by just 0.1 kcal/mol. These dissociation energies lead to heats of formation, DeltaH(f) (298 K), of 24.2 +/- 0.3, 29.6 +/- 0.4, and 29.9 +/- 0.6 kcal/mol for ClO, BrO, and IO, respectively. Also, the final calculated electron affinities are all within 0.2 kcal/mol of their experimental values. Improved pseudopotential parameters for the iodine atom are also reported, together with revised correlation consistent basis sets for this atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号