首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
High-level ab initio CCSD(T) calculations are performed in order to obtain accurate interaction potentials for the Br(-) anion interacting with each rare gas (Rg) atom. For the Rg atoms from He to Ar, two approaches are taken. The first one implements a relativistic core potential and an aug-cc-pVQZ basis set for bromine, an aug-cc-pV5Z basis set for Rg, and a set of bond functions placed at the midpoint of the Rg-Br distance. The second one uses the all-electron approximation with aug-cc-pV5Z bases further augmented by an extra diffuse function in each shell. Comparison reveals close similarity between both sets of results, so for Rg atoms from Kr to Rn only the second approach is exploited. Calculated potentials are assessed against the previous empirical, semiempirical, and ab initio potentials, and against available beam scattering data, zero electron kinetic energy spectroscopic data, and various sets of the measured ion mobilities and diffusion coefficients. This multiproperty analysis leads to the conclusion that the present potentials are consistently good for the whole series of Br(-)-Rg pairs over the whole range of internuclear distances covered.  相似文献   

2.
High-quality, ab initio potential energy functions are obtained for the interaction of bromine atoms and anions with atoms of the six rare gases (Rg) from He to Rn. The potentials of the nonrelativistic (2)Sigma(+) and (2)Pi electronic states arising from the ground-state Br((2)P)-Rg interactions are computed over a wide range of internuclear separations using a spin-restricted version of the coupled cluster method with single and double excitations and noniterative correction to triple excitations [RCCSD(T)] with an extrapolation to the complete basis set limit, from basis sets of d-aug-cc-pVQZ and d-aug-cc-pV5Z quality. These are compared with potentials derived previously from experimental measurements and ab initio calculations. The same approach is used also to refine the potentials of the Br(-)-Rg anions obtained previously [Buchachenko et al., J. Chem. Phys. 125, 064305 (2006)]. Spin-orbit coupling in the neutral species is included both ab initio and via an atomic approximation; deviations between two approaches that are large enough to affect the results significantly are observed only in the Br-Xe and Br-Rn systems. The resulting relativistic potentials are used to compute anion zero electron kinetic energy photoelectron spectra, differential scattering cross sections, and the transport coefficients of trace amounts of both anionic and neutral bromine in the rare gases. Comparison with available experimental data for all systems considered proves a very high precision of the present potentials.  相似文献   

3.
Lakin NM  Olkhov RV  Dopfer O 《Faraday discussions》2001,(118):455-76; discussion 487-503
The intermolecular potential energy surfaces for the electronic ground states of the ammonium ion-rare gas dimers NH4(+)-He and NH4(+)-Ne are calculated at the MP2 and CCSD(T)/aug-cc-pVXZ (X = D/T/Q) levels of theory. The global minima of both potentials correspond to proton (vertex)-bound structures, Re = 3.13 A, De = 171 cm-1 (He) and Re = 3.21 A, De = 302 cm-1 (Ne). The face- and edge-bound structures are local minima and transition states for the internal rotation dynamics, corresponding to barriers of approximately 20 (He) and 50 cm-1 (Ne). The ab initio potentials are employed in numerical solutions to the rotation-intermolecular vibration Hamiltonian to determine the term values and the rotational and distortion constants for the lowest bound levels in the intramolecular ground vibrational state of both complexes. The results are used to assess the accuracy of two-dimensional (fixed-R) representations of the potentials for determining the internal rotor levels in the ground and nu 3 vibrational states. This model is employed to produce simulations of the IR nu 3 transitions, which are compared to the experimental spectra recorded using photofragmentation spectroscopy. In the case of NH4(+)-Ne the potential parameters are least-squares fitted to the experimental spectrum. The trends within the NH4(+)-Rg series (Rg = He, Ne, Ar) revealed by both the IR spectra and theoretical calculations are discussed.  相似文献   

4.
利用高效液相色谱-飞行时间质谱联用的方法,分别对人参配伍山楂前后人参皂苷的变化进行分析,同时对人参皂苷Re、Rg1、Rb1、Rd与山楂配伍的水解规律进行系统研究,并与单独煎煮液、仿山楂配伍pH值煎煮液的水解产物进行比较,结果发现人参与山楂配伍后人参皂苷Rg1、Rb1含量明显减少,而人参皂苷Re、Rd、Rg2、Rg3、F2、Rh1含量明显增加,其中人参皂苷Re与山楂配伍后水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2,仿山楂配伍pH值水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2、Rg4、Rg6;人参皂苷Rg1与山楂配伍后水解产物为20(S)-Rh1、20(R)-Rh1,仿山楂pH值水解产物为20(S)-Rh1、20(R)-Rh1、Rh4、Rk3;人参皂苷Rb1与山楂配伍后水解产物为Rd、20(S)-Rg3,仿山楂pH值水解产物为F2、20(S)-Rg3;人参皂苷Rd与山楂配伍后水解产物为F2、20(S)-Rg3、20(R)-Rg3,仿山楂pH值水解产物为20(S)-Rg3、20(R)-Rg3。研究表明,不同人参皂苷和山楂配伍后与仿山楂pH值的水解产物并不相同,人参与山楂配伍改变了人参皂苷成分的种类及含量。本研究为临床方剂中人参与山楂配伍后成分的变化提供物质基础数据。  相似文献   

5.
Two analytical representations for the potential energy surface of the F(2) dimer were constructed on the basis of ab initio calculations up to the fourth-order of M?ller-Plesset (MP) perturbation theory. The best estimate of the complete basis set limit of interaction energy was derived for analysis of basis set incompleteness errors. At the MP4/aug-cc-pVTZ level of theory, the most stable structure of the dimer was obtained at R = 6.82 au, theta(a) = 12.9 degrees , theta(b) = 76.0 degrees , and phi = 180 degrees , with a well depth of 716 microE(h). Two other minima were found for canted and X-shaped configurations with potential energies around -596 and -629 microE(h), respectively. Hexadecapole moments of monomers play an important role in the anisotropy of interaction energy that is highly R-dependent at intermediate intermolecular distances. The quality of potentials was tested by computing values of the second virial coefficient. The fitted MP4 potential has a more reasonable agreement with experimental values.  相似文献   

6.
7.
Exploratory variational pseudopotential density functional calculations are performed for the electronic properties of many‐electron systems in the 3D cartesian coordinate grid (CCG). The atom‐centered localized gaussian basis set, electronic density, and the two‐body potentials are set up in the 3D cubic box. The classical Hartree potential is calculated accurately and efficiently through a Fourier convolution technique. As a first step, simple local density functionals of homogeneous electron gas are used for the exchange‐correlation potential, while Hay‐Wadt‐type effective core potentials are employed to eliminate the core electrons. No auxiliary basis set is invoked. Preliminary illustrative calculations on total energies, individual energy components, eigenvalues, potential energy curves, ionization energies, and atomization energies of a set of 12 molecules show excellent agreement with the corresponding reference values of atom‐centered grid as well as the grid‐free calculation. Results for three atoms are also given. Combination of CCG and the convolution procedure used for classical Coulomb potential can provide reasonably accurate and reliable results for many‐electron systems. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

8.
We have employed (2 + 1) resonance enhanced multiphoton ionization spectroscopy to investigate the 3d and 4s Rydberg states of the NO molecule when bound to the surface of Rg(x) clusters (Rg = rare gas). We observe that the spectra of the NO-Ar(x) species converge in appearance as x increases, and this is discussed in terms of two Rg atoms interacting with the NO+ core, with other Rg atoms being "outside" the Rydberg orbital. We show that the interaction of each of the Rg atoms with the NO is essentially independent for the NO-Rg2 complexes: both by comparing our spectra for Rydberg states of NO-Rg and NO-Rg2, and from the results of ab initio calculations on NO+ - Rg and NO+ - Rg2. In addition, we discuss the disappearance of some electronic bands upon complexation in terms of Franck-Condon factors that are very sensitive to the angular coordinate. We relate our results to those of the bulk by comparing to the previously reported electronic spectroscopy of NO in both Rg matrices and He nanodroplets.  相似文献   

9.
10.
Ab initio calculations are reported for the simplest heteronuclear metal cluster, LiBe. Full spin-orbit configuration interaction calculations in the context of relativistic effective core potentials lead to accurate potential energy curves for low-lying states. Results are compared with recent experimental observations and with all electron multi-reference configuration interaction calculations.  相似文献   

11.
We present the results of CCSD(T) calculations on the full set of Al(+)-RG complexes (RG = He-Rn). Potential energy curves are calculated pointwise, employing the full counterpoise correction and basis sets of quadruple-ζ and quintuple-ζ quality, and then extrapolated to the complete basis set limit. Each curve has been employed to calculate rovibrational energy levels, from which spectroscopic parameters have been derived. These are compared to the available experimental data, and it is seen that there is excellent agreement with the values obtained from both Rydberg state extrapolations and high-resolution laser-induced fluorescence studies. Finally, we have also used our potentials to calculate transport coefficients for Al(+) moving through a bath of RG.  相似文献   

12.
Ab initio quantum chemical calculation were performed on R2N–O–NR2 type (R=H, F, CH3 and CF3) molecules, using the HF, B3LYP and MP2/6-31G* levels of theory. The equilibrium structures and the internal rotation potentials have been determined. Three stable conformers were found for R=H, F and CH3 while only two in case of R=CF3. The rotation potential energy curves do not change significantly upon fluorination. The calculations suggests that in the ED measurement of the title compound the NC and NO bond length might have been interchanged.  相似文献   

13.
The solvation of fluoride and chloride anions (F(-) and Cl(-), respectively) by water has been studied using effective fragment potentials (EFPs) for the water molecules and ab initio quantum mechanics for the anions. In particular, the number of water molecules required to fully surround each anion has been investigated. Monte Carlo calculations have been used in an attempt to find the solvated system X(-)(H(2)O)(n) (X = F, Cl) with the lowest energy for each value of n. It is predicted that 18 water molecules are required to form a complete solvation shell around a Cl(-) anion, where "complete solvation" is interpreted as an ion that is completely surrounded by solvent molecules. Although fewer water molecules may fully solvate the Cl(-) anion, such structures are higher in energy than partially solvated molecules, up to n > or = 18. Calculations on the F(-) anion suggest that 15 water molecules are required for a complete solvation shell. The EFP predictions are in good agreement with the relative energies predicted by ab initio energy calculations at the EFP geometries.  相似文献   

14.
Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar-CH(3)OH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH(3)OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar-C, Ar-O, Ar-H(C), and Ar-H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol(-1), and adding an additional r(-n) term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar-CH(3)OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. The structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol(-1) with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol(-1) smaller than this value. The well depths of the other two minima are within 0.16 kcal mol(-1) of the global minimum. The analytic Ar-CH(3)OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol(-1) of the ab initio values. Combining this Ar-CH(3)OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.  相似文献   

15.
Minimum-energy structures of the Rg(2)-N(2)O (Rg=He, Ne, Ar) clusters have been determined with ab initio MP2 optimization, whereas the minimum-energy structures of the Rg(n)-N(2)O clusters with n = 3-7 have been obtained with the pairwise additive potentials. Interaction energies and nonadditive three-body effects of the Rg(2)-N(2)O ternary complex have been calculated using supermolecule method at MP4 and CCSD(T) levels. It was found from the calculations that there are two minima corresponding to one distorted tetrahedral structure and one planar structure for the ternary complex. The nonadditive three-body effects were found to be small for Rg(2)-N(2)O complexes. Our calculations also indicated that, for He(n)-N(2)O and Ne(n)-N(2)O clusters, the first six He and Ne atoms form the first solvation ring around the middle nitrogen of the N(2)O monomer, while for Ar(n)-N(2)O, the first five Ar atoms form the first solvation ring.  相似文献   

16.
In a recent study of tetrachloroethylene, the anion yield curves were analyzed using three published negative-ion Morse potentials. Unexpected ions at zero electron energy were explained by the "Trojan horse" mechanism. This communication also attributes formation of Cl(2)(-) at higher energies to a Trojan horse mechanism. Six new Morse potentials are calculated to account for the observed anion states. These combine all extant electron impact and attachment data. The electron affinity of the C(2)Cl(3) radical, 3.1(1) eV, and the C-Cl bond dissociation energy 4.0(1) eV are reported.  相似文献   

17.
Gerade-ungerade symmetry breaking in HD for the bound states supported by the shallow outer I' (1)Pi(g) potential is studied theoretically. By clarifying the asymptotic behavior of the relevant nonadiabatic couplings among the stats correlating to the n=2 dissociation limit, simple two-state (for f-parity) and three-state (for e-parity) approximations are formulated. They reproduce binding energies in very good agreement with recent spectroscopic measurements. Comparisons with the calculations based on a single model potential are presented and the dependence of the results on the used ab initio Born-Oppenheimer (clamped nuclei) potentials is discussed.  相似文献   

18.
We present pair potentials for fluorinated methanes and their dimers with CO(2) based on ab initio potential energy surfaces. These potentials reproduce the experimental second virial coefficients of the pure fluorinated methanes and their mixtures with CO(2) without adjustment. Ab initio calculations on trimers are used to model the effects of nonadditive dispersion and induction. Simulations using these potentials reproduce the experimental phase-coexistence properties of CH(3)F within 10% over a wide range of temperatures. The phase coexistence curve of the mixture of CH(2)F(2) and CO(2) is reproduced with an error in the mole fractions of both phases of less than 0.1. The potentials described here are based entirely on ab initio calculations, with no empirical fits to improve the agreement with experiment.  相似文献   

19.
High-level ab initio calculations have been performed on the Hg(+).Rg and Cd(+).Rg species, where Rg-He-Rn. Potential-energy curves have been calculated over a wide range of internuclear separation, sampling the repulsive, equilibrium, and long-range regions. From these curves, rovibrational and spectroscopic constants were derived and compared to those available from previous studies. In addition, transport coefficients were calculated and compared to the available experimental data for the cases of Hg(+) in He, Ne, and Ar. There are two interesting features relating to the mobility results. One is the development of a "mobility minimum" for Hg(+) in the heavier rare gases--with weaker minima being found for Cd(+); a "rule of thumb" is presented for determining when mobility minima might appear. The second is that excellent agreement is found for the direct calculation of mobilities for Hg(+) in (22)Ne, and those obtained by scaling the (20)Ne mobilities. The latter result allows us to conclude that the mobilities of the various combinations of isotopes can be calculated from the results herein via a mass scaling.  相似文献   

20.
High-level ab initio calculations are performed on the coinage metal cations (Cu+, Ag+, and Au+) interacting with each of the rare gases [Rg (Rg=He to Rn)]. The RCCSD(T) procedure is employed, with basis sets being of approximately quintuple-zeta quality, but with the heavier species using relativistic effective core potentials. The interaction potentials are compared to experimental and theoretical data where they exist. In addition, transport coefficients for the mobility and diffusion of the cations in the rare gases are calculated. The latter have involved a rewriting of some of the programs used, and the required modifications are discussed. The mobility results indicate that, rather than being a rare occurrence, mobility minima may be common phenomena. Finally, a new estimate is put forward for the validity of zero-field mobilities in ion mobility spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号