首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular hydrogen is observed to be one of the major primary products in the 193 nm photodissociation of phenylsilane. A two-channel dissociation mechanism is proposed, yielding PhSiH+H2 and SiH2 +PhH with the former predominant. The implications of this observation for experiments which utilise phenylsilane as a precursor for SiH2 radicals are discussed.  相似文献   

2.
The photolysis of (H(2)O)(n) nanoparticles of various mean sizes between 85 and 670 has been studied in a molecular beam experiment. At the dissociation wavelength 243 nm (5.10 eV), a two-photon absorption leads to H-atom production. The measured kinetic energy distributions of H-fragments exhibit a peak of slow fragments below 0.4 eV with maximum at approximately 0.05 eV, and a tail of faster fragments extending to 1.5 eV. The dependence on the cluster size suggests that the former fragments originate from the photodissociation of an H(2)O molecule in the cluster interior leading to the H-fragment caging and eventually generation of a hydronium H(3)O molecule. The photolysis of surface molecules yields the faster fragments. At 193 nm (6.42 eV) a single photon process leads to a small signal from molecules directly photolyzed on the cluster surface. The two photon processes at this wavelength may lead to cluster ionization competing with its photodissociation, as suggested by the lack of H-fragment signal increase. The experimental findings are complemented by theoretical calculations.  相似文献   

3.
Butadiene monoxide (BMO) undergoes the S(0)-->S(1) transition, involving the excitation of both pi and n electrons to pi(*) orbital, at 193 nm. After relaxing to the ground electronic state via internal conversion, BMO molecules undergo intramolecular rearrangement and subsequently dissociate to form unexpected OH radicals, which were detected state selectively by laser-induced fluorescence technique, and the energy state distribution was measured. OH is produced vibrationally cold, OH(nu(")=0,J(")), with the rotational population characterized by a rotational temperature of 456+/-70 K. The major portion (approximately 60%) of the available energy is partitioned into internal degrees of the photofragments, namely, vibration and rotation. A considerable portion (25%-35%) also goes to the relative translation of the products. The Lambda doublet and spin-orbit ratios of OH were measured to be nearly unity, implying statistical distribution of these states and, hence, no preference for any of the Lambda doublet (Lambda+ and Lambda-) and spin-orbit (Pi(3/2) and Pi(1/2)) states. Formation time of the nascent OH radical was measured to be <100 ns. Different products, such as crotonaldehyde and methyl vinyl ketone, were detected by gas chromatography as stable products of photodissociation. A reaction mechanism for the formation of all these photoproducts, transient and stable, is proposed. The multiple pathways by which these products can be formed have been theoretically optimized, and energies have been calculated. Absorption cross section of BMO at 193 nm was measured, and quantum yield of OH generation channel was also determined.  相似文献   

4.
The dynamics of the 193 nm photodissociation of the CCl2 molecule have been investigated in a molecular beam experiment. The CCl2 parent molecule was generated in a molecular beam by pyrolysis of CHCl3, and both CCl2 and the CCl photofragment were detected by laser fluorescence excitation. The 193 nm attenuation cross section was estimated from the reduction of the CCl2 signal as a function of the photolysis laser fluence. The internal state distribution of the CCl photofragment was derived from analysis of laser fluorescence excitation spectra in the A 2Delta-X 2Pi band system. Most of the energy available to the CCl(X 2Pi)+Cl fragments appears as translational energy. The CCl fragment rotational energy is much less than predicted in an impulsive model. The excited electronic state appears to dissociate indirectly, through coupling with a repulsive state arising from the ground-state CCl(X 2Pi)+Cl asymptote. The identity of the initially excited electronic state is discussed on the basis of what is known about the CCl2 electronic states.  相似文献   

5.
The TOF spectra of photofragment hydrogen atoms from the 193 nm photodissociation of amorphous ice at 90-140 K have been measured. The spectra consist of both a fast and a slow components that are characterized by average translational energies of 2k(B)T(trans)=0.39+/-0.04 eV (2300+/-200 K) and 0.02 eV (120+/-20 K), respectively. The incident laser power dependency of the hydrogen atom production suggests one-photon process. The electronic excitation energy of a branched cluster, (H(2)O)(6+1), has been theoretically calculated, where (H(2)O)(6+1) is a (H(2)O)(6) cyclic cluster attached by a water molecule with the hydrogen bond. The photoabsorption of this branched cluster is expected to appear at around 200 nm. The source of the hydrogen atoms is attributed to the photodissociation of the ice surface that is attached by water molecules with the hydrogen bond. Atmospheric implications are estimated for the photodissociation of the ice particles (Noctilucent clouds) at 190-230 nm in the region between 80 and 85 km altitude.  相似文献   

6.
Tetrahydropyran (THP) undergoes photodissociation on excitation with ArF laser at 193 nm, generating OH radical as one of the transient photoproducts. Laser-induced fluorescence technique is used to detect the nascent OH radical and measure its energy state distribution. The OH radical is formed mostly in the ground vibrational level (v"=0), with low rotational excitation. The rotational distribution of OH (v"=0,J) is characterized by a temperature of 433+/-31 K, corresponding to a rotational energy of 0.86+/-0.06 kcalmol. Two Lambda-doublet levels, 2Pi+(A') and 2Pi-(A"), and the two spin-orbit states, the 2Pi(3/2) and 2Pi(1/2), of OH are populated statistically for all rotational levels. The relative translational energy associated with the photoproducts in the OH channel is calculated to be 21.9+/-3.2 kcal mol(-1), from the Doppler-broadened linewidth, giving an ft value of approximately 43%, and most of the remaining 57% of the available energy is distributed in the internal modes of the other photofragment, C5H9. The observed distribution of the available energy is explained well, using a hybrid model of energy partitioning, with an exit barrier of 40 kcal mol(-1). The potential-energy surface of the reaction channel was mapped by ab initio molecular-orbital calculations. Based on experimental and theoretical results, a mechanism for OH formation is proposed. Electronically excited THP relaxes to the ground electronic state, and from there, a sequence of reactions takes place, generating OH. The proposed mechanism first involves C-O bond scission, followed by a 1,3 H atom migration to O atom, and finally, the C-OH bond cleavage giving OH.  相似文献   

7.
Angular momentum orientation has been observed in the OH(X(2)Π, v = 0) fragments generated by circularly polarized photodissociation of H(2)O(2) at 193 nm and 248 nm. The magnitude and sign of the orientation are strongly dependent on the OH(X) photofragment rotational state. In addition to conventional laser induced fluorescence methods, Zeeman quantum beat spectroscopy has also been used as a complementary tool to probe the angular momentum orientation parameters. The measured orientation at 193 nm is attributed solely to photodissociation via the ?(1)A state, even though at this wavelength H(2)O(2) is excited near equally to both the ?(1)A and B(1)B electronic states. This observation is confirmed by measurements of the photofragment orientation at 248 nm, where access to the ?(1)A state dominates. Several possible mechanisms are discussed to explain the observed photofragment orientation, and a simple physical model is developed, which includes the effects of the polarization of the parent molecular rotation upon absorption of circularly polarized light. Good agreement between the experimental and simulation results is obtained, lending support to the validity of the model. It is proposed that photofragment orientation arises mainly from the coupling of the parent rotational angular momentum with that induced during photofragmentation.  相似文献   

8.
On excitation at 193 nm, tetrahydrofuran (THF) generates OH as one of the photodissociation products. The nascent energy state distribution of the OH radical was measured employing laser induced fluorescence technique. It is observed that the OH radical is formed mostly in the ground vibrational level, with low rotational excitation (approximately 3%). The rotational distribution of OH (v"=0,J) is characterized by rotational temperature of 1250+/-140 K. Two spin-orbit states, 2Pi3/2 and 2Pi1/2 of OH are populated statistically. But, there is a preferential population in Lambda doublet levels. For all rotational numbers, the 2Pi+(A') levels are preferred to the 2Pi-(A") levels. The relative translational energy associated with the photoproducts in the OH channel is calculated to be 17.4+/-2.2 kcal mol-1, giving an fT value of approximately 36%, and the remaining 61% of the available energy is distributed in the internal modes of the other photofragment, i.e., C4H7. The observed distribution of the available energy agrees well with a hybrid model of energy partitioning, predicting an exit barrier of approximately 16 kcal mol-1. Based on both ab initio molecular orbital calculations and experimental results, a plausible mechanism for OH formation is proposed. The mechanism involves three steps, the C-O bond cleavage of the ring, H atom migration to the O atom, and the C-OH bond scission, in sequence, to generate OH from the ground electronic state of THF. Besides this high energy reaction channel, other photodissociation channels of THF have been identified by detecting the stable products, using Fourier transform infrared and gas chromatography.  相似文献   

9.
《Chemical physics letters》1987,137(6):505-509
Product energy distributions are reported for 193 nm NH3 photodissociation. Velocity-aligned Doppler spectroscopy on the H-atom fragment reveals a “cold” kinetic energy distribution, indicating a high degree of NH2 internal excitation. Data are compared with the trajectory calculations of Rice, Raff and Thompson for NH3(X̃ 1A1) dissociation, and the reaction mechanism of Ashfold, Bennett and Dixon is discussed.  相似文献   

10.
Withthedevelopmentofthecomputertechniques,abinitiocalculationbecomesthestrongimplementforstudyingthechemicalreactionsystemandamendssomemechanismsproposedbyexperiment.Forexample,inthephotodissociationofthegloxalat454.5nm,Parmenteretal.measuredamixtureofpro…  相似文献   

11.
The CH fragment from the 193 nm photodissociation of CHCl is observed in a molecular beam experiment. This fragment is formed in the higher-energy dissociation pathway, the lower pathway involving formation of CCl. Both the CHCl parent molecule and the CH fragment were detected by laser-induced fluorescence. The 193 nm CHCl absorption cross section was estimated from the reduction of the CHCl signal as a function of the photolysis laser fluence. The CH internal state distribution was derived from the analysis of laser-induced fluorescence spectra of the A-X Deltav=0 sequence. A modest degree of rotational excitation was found in the CH fragment; the most probable rotational level is N=1, but the distribution has a tail extending to N>25. Also observed is a slight preference for formation of Lambda-doublets of A(") symmetry, which appears to increase with increasing rotational angular momentum N. Vibrationally excited CH was observed, and the degree of vibrational excitation was found to be low. The energy available to the photofragments is predominantly released as translational excitation. The preferential formation of A(") Lambda-doublets suggests that dissociation occurs through a nonlinear excited state.  相似文献   

12.
In the following paper we present translational anisotropy and angular momentum polarization data for O((3)P(1)) and O((3)P(2)) products of the photodissociation of molecular oxygen at 193 nm. The data were obtained using polarized laser photodissociation coupled with resonantly enhanced multiphoton ionization and velocity-map ion imaging. Under the jet-cooled conditions employed, absorption is believed to be dominated by excitation into the Herzberg continuum. The experimental data are compared with previous experiments and theoretical calculations at this and other wavelengths. Semi-classical calculations performed by Groenenboom and van Vroonhoven [J. Chem. Phys, 2002, 116, 1965] are used to estimate the alignment parameters arising from incoherent excitation and dissociation and these are shown to agree qualitatively well with the available experimental data. Following the work of Alexander et al. [J. Chem. Phys, 2003, 118, 10566], orientation and alignment parameters arising from coherent excitation and dissociation are modelled more approximately by estimating phase differences generated subsequent to dissociation via competing adiabatic pathways leading to the same asymptotic products. These calculations lend support to the view that large values of the coherent alignment moments, but small values of the corresponding orientation moments, could arise from coherent excitation of (and subsequent dissociation via) parallel and perpendicular components of the Herzberg I, II and III transitions.  相似文献   

13.
Based on theab initio calculation results, the hydrogen atom transfer has been investigated. In order to explain the experimental results, a new mechanism is proposed, that is, hydrogen transfer occurs before but not after CI atom eliminates from aromatic ring. The calculation result strongly supports this mechanism.  相似文献   

14.
We compare the influence of the dilution of silane and disilane in nitrogen during laser photodissociation to produce silicon at 193 nm, at room temperature in a static reaction chamber. The experimental results show that the conversion of the reactant gas and its deposition yield can be controlled by varying adequately the extent of dilution. So, two total pressure regions have been observed, independent of the dilution: below 40–50 Torr, the variations of stable species concentration are very important but above these values the variation in the dilution rate has practically no effects on their concentrations. In the first region, during the silane photodissociation at the initial reactant pressure below 5 Torr, the conversion of silane increases with increasing dilution, and at higher initial reactant pressure the conversion of silane tends to rise only a little. In contrast, at any initial reactant pressure, the conversion of disilane during its photodecomposition decreases with increasing dilution. In the second region, the concentration of each stable gaseous species tends to reach a pressure stationary-state. For both the silane and disilane photodissociation, the deposition yield of silicon increases with decreasing the initial reactant gas pressure and it reaches a pressure stationary-state above 50% dilution; but in all the cases, it is greater in disilane photolysis than that of silane. A simple kinetic model is proposed for which the computed results predict the time-evolution of gas composition and amount of silicon deposited.  相似文献   

15.
16.
The photodissociation of isocyanic acid (HNCO) and ketene (CH2CO) at 193 nm was investigated using an ArF laser to dissociate the carbonyl compound and a CO laser to probe the resulting vibrationally excited CO. The dissociation of HNCO at 193 nm produces CO with an average vibrational energy of 4.6 ± 0.3 kcal/mol. The dissociation Gf CH2CO at 193 nm produces CO with an average vibrational energy of 6.4 ± 0.8 kcal/mol. The observed CO vibrational energy distributions were found to be in close agreement with those predicted statistically assuming NH(a 1Δ) + CO and CH2(1A1) + CO were the photodissociation products.  相似文献   

17.
Polarized laser photolysis, coupled with resonantly enhanced multiphoton ionization detection of O(1D2) and velocity-map ion imaging, has been used to investigate the photodissociation dynamics of ozone at 193 nm. The use of multiple pump and probe laser polarization geometries and probe transitions has enabled a comprehensive characterization of the angular momentum polarization of the O(1D2) photofragments, in addition to providing high-resolution information about their speed and angular distributions. Images obtained at the probe laser wavelength of around 205 nm indicate dissociation primarily via the Hartley band, involving absorption to, and diabatic dissociation on, the B 1B2(3 1A1) potential energy surface. Rather different O(1D2) speed and electronic angular momentum spatial distributions are observed at 193 nm, suggesting that the dominant excitation at these photon energies is to a state of different symmetry from that giving rise to the Hartley band and also indicating the participation of at least one other state in the dissociation process. Evidence for a contribution from absorption into the tail of the Hartley band at 193 nm is also presented. A particularly surprising result is the observation of nonzero, albeit small values for all three rank K = 1 orientation moments of the angular momentum distribution. The polarization results obtained at 193 and 205 nm, together with those observed previously at longer wavelengths, are interpreted using an analysis of the long range quadrupole-quadrupole interaction between the O(1D2) and O2(1Deltag) species.  相似文献   

18.
The production of H(2) in highly excited vibrational and rotational states (v=0-5, J=0-17) from the 157 nm photodissociation of amorphous solid water ice films at 100 K was observed directly using resonance-enhanced multiphoton ionization. Weaker signals from H(2)(v=2,3 and 4) were obtained from 157 nm photolysis of polycrystalline ice, but H(2)(v=0 and 1) populations in this case were below the detection limit. The H(2) products show two distinct formation mechanisms. Endothermic abstraction of a hydrogen atom from H(2)O by a photolytically produced H atom yields vibrationally cold H(2) products, whereas exothermic recombination of two H-atom photoproducts yields H(2) molecules with a highly excited vibrational distribution and non-Boltzmann rotational population distributions as has been predicted previously by both quantum-mechanical and molecular dynamics calculations.  相似文献   

19.
20.
The collisionless photodissociation dynamics of isobutene (i-C(4)H(8)) at 193 nm via photofragment translational spectroscopy are reported. Two major photodissociation channels were identified: H + C(4)H(7) and CH(3) + CH(3)CCH(2). Translational energy distributions indicate that both channels result from statistical decay on the ground state surface. Although the CH(3) loss channel lies 13 kcal mol(-1) higher in energy, the CH(3):H branching ratio was found to be 1.7 (5), in reasonable agreement with RRKM calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号