首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the transport mechanism of the inks most typically used in dip-pen nanolithography by patterning both 16-mercaptohexadecanoic acid (MHDA) and 1-octadecanethiol (ODT) on the same Au{111} substrate. Several pattern geometries were used to probe ink transport from the tip to the sample during patterning of both dots (stationary tip) and lines (moving tip). When ODT was written on top of a pre-existing MHDA structure, the ODT was observed at the outsides of the MHDA structure, and the transport rate increased. In the reverse case, the MHDA was also observed on the outsides of the previously patterned ODT features; however, the transport rate was reduced. Furthermore, the shapes of pre-existing patterns of one ink were not changed by deposition of the other ink. These results highlight the important role hydrophobicity plays, both of the substrate as well as of the inks, in determining transport properties and thereby patterns produced in dip-pen nanolithography.  相似文献   

2.
Dip-Pen Nanolithography (DPN) uses an AFM tip to deposit organic molecules through a meniscus onto an underlying substrate under ambient conditions. Thus far, the methodology has been developed exclusively for gold using alkyl or aryl thiols as inks. This study describes the first application of DPN to write organic patterns with sub-100 nm dimensions directly onto two different semiconductor surfaces: silicon and gallium arsenide. Using hexamethyldisilazane (HMDS) as the ink in the DPN procedure, we were able to utilize lateral force microscopy (LFM) images to differentiate between oxidized semiconductor surfaces and patterned areas with deposited monolayers of HMDS. The choice of the silazane ink is a critical component of the process since adsorbates such as trichlorosilanes are incompatible with the water meniscus and polymerize during ink deposition. This work provides insight into additional factors, such as temperature and adsorbate reactivity, that control the rate of the DPN process and paves the way for researchers to interface organic and biological structures generated via DPN with electronically important semiconductor substrates.  相似文献   

3.
Antibodies were patterned onto flexible plastic films using the flexographic printing process. An ink formulation was developed using high molecular weight polyvinyl alcohol in carbonate-bicarbonate buffer. In order to aid both antibody adhesion and the quality of definition in the printed features, a nitrocellulose coating was developed that was capable of being discretely patterned, thus increasing the signal-to-noise ratio of an antibody array. Printing antibody features such as dots, squares, text, and fine lines were reproduced effectively. Furthermore, this process could be easily adapted for printing of other biological materials, including, but not limited to, enzymes, DNA, proteins, aptamers, and cells.  相似文献   

4.
In this paper, we report the microelectrode array fabrication using selective wetting/dewetting of polymers on a chemical pattern which is a simple and convenient method capable of creating negative polymeric replicas using polyethylene glycol (PEG) as a clean and nontoxic sacrificial layer. The fabricated hole-patterned polypropylene film on gold demonstrated enhanced electrochemical properties. The chemical pattern is fabricated by microcontact printing using octadecanethiol (ODT) as an ink on gold substrate. When PEG is spin-cast on the chemical pattern, PEG solution selectively dewets the ODT patterned areas and wets the remaining bare gold areas, leading to the formation of arrayed PEG dots. A negative replicas of the PEG dot array is obtained by spin-coating of polypropylene (PP) solution in hexane which preferentially interacts with the hydrophobic ODT region on the patterned gold surface. The arrayed PEG dots are not affected the during PP spin-coating step because of their intrinsic immiscibility. Consequently, the hole-patterned PP film is obtained after PEG removal. The electrochemical signal of the PP film demonstrates the negligible leakage current by high dielectric and self-healing of defects on the chemical pattern by the polymer. This method is applicable to fabrication of microelectrode arrays and possibly can be employed to fabricate a variety of functional polymeric structures, such as photomasks, arrays of biomolecules, cell arrays, and arrays of nanomaterials.  相似文献   

5.
An array of the colloidal photonic crystals was directly fabricated using an ink-jet printing. The colloidal ink droplets containing the monodispersed polystyrene latex particles were selectively deposited on a hydrophobic surface. Solvent evaporation from each ink droplet leads to a formation of microdome-shaped colloidal assembles of close-packed structures. Microspectroscopic analysis has confirmed that the individual assembly serves as a photonic crystal and its optical properties can be correlated with the microstructural features. Unlike other techniques of patterned growth of colloidal photonic crystal, the substrate does not need to be patterned first and no template is needed in the direct writing by the ink-jet printing. Using our strategy, we have rapidly produced the colloidal photonic crystal microarrays composed of different-sized spheres addressably patterned on the same substrate.  相似文献   

6.
Stretchable electronics (i.e., hybrid inorganic or organic circuits integrated on elastomeric substrates) rely on elastic wiring. We present a technique for fabricating reversibly stretchable metallic films by printing silver-based ink onto microstructured silicone substrates. The wetting and pinning of the ink on the elastomer surface is adjusted and optimized by varying the geometry of micropillar arrays patterned on the silicone substrate. The resulting films exhibit high electrical conductivity (~11?000 S/cm) and can stretch reversibly to 20% strain over 1000 times without failing electrically. The stretchability of the ≥200 nm thick metallic film relies on engineered strain relief in the printed film on patterned PDMS.  相似文献   

7.
A novel technique to create biomolecular micropatterns of varying complexity on several types of polymer substrates is presented. This method uses a patterned PDMS stamp to preferentially expose or protect areas of an underlying polymer substrate from oxygen plasma. Following plasma treatment, the substrate is immersed in a biomolecular ink, whereby molecules preferentially adsorb to either the plasma-exposed or plasma-protected substrate regions, depending on the particular substrate/ink combination. Using this method, polyethylene (PE), polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(dimethylsiloxane) (PDMS), and poly(hydroxybutyrate/hydroxyvalerate) (PHBV) were micropatterned with different aqueous-based biomolecular inks (i.e., goat anti-rabbit immunoglobulin G, poly-l-lysine, and bovine serum albumin (BSA)). Water contact angle measurements performed on substrates after oxygen plasma exposure showed that the hydrophilicity of substrate areas exposed to plasma was significantly greater than that of areas protected from plasma by the PDMS stamp. In addition, scanning electron microscopy results demonstrated that substrate areas exposed to plasma were physically modified (e.g., roughened) compared to adjacent, protected areas. Areas in contact with a patterned PDMS stamp during plasma exposure were found to be physically unaffected by plasma treatment, and exhibited spatial features/dimensions consistent with the corresponding features of the patterned stamp. Last, protein patterns of BSA on the polymer substrates were stable and distinct after 4 weeks of incubation at 37 degrees C.  相似文献   

8.
We report a low-cost approach to selectively deposit films of nickel and copper on glass substrates. Our approach uses microcontact printing of organic inks containing phosphonic acid groups to bind the ink to a glass substrate and phosphine groups to bind a colloidal catalyst that initiates electroless metallization. We demonstrate this procedure by fabricating patterned nickel and copper films with areas as large as 15 cm2 and minimum feature sizes of approximately 2 microm. We present studies on the use of two ink types, an oligomer and a bifunctional molecule, and demonstrate that pattern quality and adhesion of the metallized films depends on the molecular weight of the ink and the ratio of phosphine and phosphonic acid groups.  相似文献   

9.
Using InP and PbSe quantum dots, we demonstrate that the Langmuir-Blodgett technique is well-suited to coat nonflat surfaces with quantum dot monolayers. This allows deposition on silicon substrates covered by a developed patterned resist, which results in monolayer patterns with micrometer resolution. Atomic force microscopy and scanning electron microscopy reveal the formation of a densely packed monolayer that replicates predefined structures with high selectivity after photoresist removal. A large variety of shapes can be reproduced and, due to the excellent adhesion of the quantum dots to the substrate, the hybrid approach can be repeated on the same substrate. This final possibility leads to complex, large-area quantum dot monolayer structures with micrometer spatial resolution that may combine different types of quantum dots.  相似文献   

10.
This paper presents a method for positioning and aligning self-assembled tubules of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphochloline (DC(8,9)PC) by withdrawing a patterned Au substrate from tubule solution. The patterned Au substrates with alternating bare Au stripes and thiol monolayer stripes are formed by microcontact printing. We find that the lipid tubules selectively adsorb on the bare Au stripes but show no orientation order. By withdrawing the patterned Au substrates at the direction along the stripes from tubule solution, the lipid tubules are found to be aligned along the direction of the Au stripes. The angular distribution and the density of the aligned lipid tubules depend on the withdrawal rates and the adsorption time, respectively. We conclude that forces causing tubule alignment that originate in the surface tension associated with the moving meniscus dominate alignment forces exerted by the patterned Au substrates.  相似文献   

11.
Different methods to create chemically patterned, flat PDMS stamps with two different chemical functionalities were compared. The best method for making such stamps, functionalized with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFDTS) and 3-(aminopropyl)triethoxysilane (APTS), appeared to be full functionalization of a freshly oxidized flat PDMS stamp with either adsorbate, followed by renewed oxidation through a mask and attachment of the other adsorbate. These stamps were used to transfer polar inks (a thioether-functionalized dendrimer and a fluorescent dye) by microcontact printing. The PFDTS monolayer was used as a barrier against ink transfer, while the APTS SAM areas functioned as an ink reservoir for polar inks. The printing results confirmed the excellent transfer of hydrophilic inks with these stamps to gold and glass substrates, even from aqueous solutions. Attachment of a fluorescent dye on the amino-functionalized regions shows the possibility of the further modification of the chemically patterned stamps for tailoring of the stamps' properties.  相似文献   

12.
A technique for micrometer-scale patterning of multiple functional biological molecules on surfaces is demonstrated. The technique is referred to as single-feature inking and stamping (SFINKS). It combines elements of dip-pen nanolithography and microcontact printing. "Inked" atomic force microscopy probes are used to ink individual features of an elastomer stamp. From a single stamp, we printed three different probe ssDNA with <10 mum resolution and showed that they specifically hybridize the complementary DNA labeled with different fluorophores. As a further demonstration of SFINKS' versatility, we patterned a silane onto a silicon wafer consisting of four subpatterns separated by >100 mum and composed of 2 mum lines. We discuss why patterns such as these are impractical with available techniques. Furthermore, we comment on the prospects for multiple stamping after a single inking.  相似文献   

13.
Summary: Due to its capability of dispensing very small volumes of different liquids in a controlled manner, ink‐jet printing is well suited for combinatorial experiments. The multi‐nozzle ink‐jet delivery system is especially advantageous for parallel chemical synthesis of different materials. We have used ink‐jet printing of an oxidizing agent to pattern a pre‐coated conducting polymer, poly(3,4‐ethylenedioxy)‐thiophene‐poly(styrene sulfonate) (PEDOT‐PSS), yielding electrodes with predefined shapes and a controlled degree of sheet resistivity for use in gray‐scale organic light‐emitting devices (OLEDs). The electrical and optical properties of the PEDOT‐PSS layer are modified via chemical interaction using the oxidizing agent. These experiments were performed using a desktop ink‐jet printer in conjunction with common graphic software which employed color functions such as CMY (cyan, magenta and yellow), HSL (hue, saturation and luminosity) and RGB (red, green and blue).

Photographs of gray‐scale OLEDs patterned on PEDOT‐PSS surfaces by an ink‐jet printer on plastic substrates.  相似文献   


14.
用十八烷基三氯硅烷(OTS)/正己烷溶液为印墨在玻璃基片上进行微接触印刷,得到图案化的自组装层,然后以此对聚苯乙烯溶液进行诱导分布,并在苯胺溶液中对其进行诱导聚合反应生长出聚苯胺微图形。直接用聚合物溶液作为印墨制作了环氧树脂微条纹和聚苯乙烯两层交叉微结构。  相似文献   

15.
Direct nanopatterning of a number of high-melting-temperature molecules has been systematically investigated by dip-pen nanolithography (DPN). By tuning DPN experimental conditions, all of the high-melting-temperature molecules transported smoothly from the atomic force microscope (AFM) tip to the surface at room temperature without tip preheating. Water meniscus formation between the tip and substrate is found to play a critical role in patterning high-melting-temperature molecules. These results show that heating an AFM probe to a temperature above the ink's melting temperature is not a prerequisite for ink delivery, which extends the current "ink-substrate" combinations available to DPN users.  相似文献   

16.
Transport mechanisms involved in capillary condensation of water menisci in nanoscopic gaps between hydrophilic surfaces are investigated theoretically and experimentally by atomic force microscopy (AFM) measurements of capillary force. The measurements showed an instantaneous formation of a water meniscus by coalescence of the water layers adsorbed on the AFM tip and sample surfaces, followed by a time evolution of meniscus toward a stationary state corresponding to thermodynamic equilibrium. This dynamics of the water meniscus is indicated by time evolution of the meniscus force, which increases with the contact time toward its equilibrium value. Two water transport mechanisms competing in this meniscus dynamics are considered: (1) Knudsen diffusion and condensation of water molecules in the nanoscopic gap and (2) adsorption of water molecules on the surface region around the contact and flow of the surface water toward the meniscus. For the case of very hydrophilic surfaces, the dominant role of surface water transportation on the meniscus dynamics is supported by the results of the AFM measurements of capillary force of water menisci formed at sliding tip-sample contacts. These measurements revealed that fast movement of the contact impedes on the formation of menisci at thermodynamic equilibrium because the flow of the surface water is too slow to reach the moving meniscus.  相似文献   

17.
In this paper, we report the progress in using paper sizing chemistry to fabricate patterned paper for chemical and biological sensing applications. Patterned paper sizing uses paper sizing agents to selectively hydrophobize certain area of a sheet. The hydrophilic-hydrophobic contrast of the pattern so created has an excellent ability to control capillary penetration of aqueous liquids in channels of the pattern. Incorporating this idea with digital ink jet printing technique, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and chemicals with precision into the microfluidic patterns to form biological/chemical sensing sites within the patterns, forming the complete sensing devices. This study shows the potential of combining paper sizing chemistry and ink jet printing to produce paper-based sensors at low cost and at commercial volume.  相似文献   

18.
Stimuli‐responsive photoluminescent (PL) materials have been widely used as fluorescent ink for data security applications. However, traditional fluorescent inks are limited in maintaining the secrecy of information because the inks are usually visible by naked eyes either under ambient light or UV‐light illumination. Here, we introduced metal‐free water‐soluble graphitic carbon nitride quantum dots (g‐CNQDs) as invisible security ink for information coding, encryption, and decryption. The information written by the g‐CNQDs is invisible in ambient light and UV light, but it can be readable by a fluorescence microplate reader. Moreover, the information can be encrypted and decrypted by using oxalic acid and sodium bicarbonate as encryption reagent and decryption reagent, respectively. Our findings provide new opportunities for high‐level information coding and protection by using water‐soluble g‐CNQDs as invisible security ink.  相似文献   

19.
The pattern transfer mechanism of an alkanethiol self-assembled monolayer (SAM) with different chain lengths during the dip-pen nanolithography (DPN) process and pattern characterizations are studied using molecular dynamics (MD) simulations. The mechanisms of molecular transference, alkanethiol meniscus characteristics, surface adsorbed energy, transfer number, and pattern formation are evaluated during the DPN process at room temperature. The simulation results clearly show that the molecular transfer ability in DPN is strongly dependent on the chain length. Shorter molecules have significantly better transport and diffusion abilities between the meniscus and substrate surface, and the transport period can be maintained longer. The magnitude of adsorbed energy increases with chain length, so many more molecules can be transferred to the surface when shorter molecules are used. After deposition, the magnitude of the adsorbed area and pattern height decrease with increasing chain length.  相似文献   

20.
We present a simple technique to fabricate hexagonally ordered quantum dot bioconjugate (QDBC) dot arrays on glass coverslips. We used particle lithography to create periodic holes in a layer of methoxy-poly(ethylene glycol)-silane and then adsorbed QDBCs into the holes. To demonstrate the versatility of this technique, we made separate periodic arrays of quantum dots (QDs) conjugated to three different biologically important molecules: biotin, streptavidin, and anti-mouse IgG. The diameters of the regions where the QDBCs adsorbed were 500-600 nm and independent of the QDBC patterned. The site density of the QDBCs in the patterned holes could be varied by simply adjusting the coating concentration of the QDBC solution. We demonstrate the applicability of these substrates by designing a QDBC-based binding assay with a working concentration range of several orders of magnitude and a sub-picomolar detection limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号