首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The potential of atomic XAFS (AXAFS) to directly probe the catalytic performances of a set of supported metal oxide catalysts has been explored for the first time. For this purpose, a series of 1 wt % supported vanadium oxide catalysts have been prepared differing in their oxidic support material (SiO2, Al2O3, Nb2O5, and ZrO2). Previous characterization results have shown that these catalysts contain the same molecular structure on all supports, i.e., a monomeric VO4 species. It was found that the catalytic activity for the selective oxidation of methanol to formaldehyde and the oxidative dehydrogenation of propane to propene increases in the order SiO2 < Al2O3 < Nb2O5 < ZrO2. The opposite trend was observed for the dehydrogenation of propane to propene in the absence of oxygen. Interestingly, the intensity of the Fourier transform AXAFS peak decreases in the same order. This can be interpreted by an increase in the binding energy of the vanadium valence orbitals when the ionicity of the support (increasing electron charge on the support oxygen atoms) increases. Moreover, detailed EXAFS analysis shows a systematic decrease of the V-Ob(-M(support)) and an increase of a the V-O(H) bond length, when going from SiO2 to ZrO2. This implies a more reactive OH group for ZrO2, in line with the catalytic data. These results show that the electronic structure and consequently the catalytic behavior of the VO4 cluster depend on the ionicity of the support oxide. These results demonstrate that AXAFS spectroscopy can be used to understand and predict the catalytic performances of supported metal oxide catalysts. Furthermore, it enables the user to gather quantitative insight in metal oxide support interactions.  相似文献   

2.
The influence of the support oxide on the molecular structure of a VO(4) cluster and its interfacial geometry has been determined for SiO(2), Nb(2)O(5), and ZrO(2) as supports. Raman, IR, UV-vis-NIR diffuse reflectance, electron spin resonance, and extended X-ray absorption fine structure (EXAFS) spectroscopies were used to characterize the supported vanadium oxide clusters after dehydration. It has been found that for all supports under investigation the vanadium ion is tetrahedral coordinated and consists of one V=O and three V-O bonds. For a VO(4)/SiO(2) catalyst it has been established that only one O neighbor is shared with the SiO(2) support via a V-O(b)-Si(support) bond with an angle of approximately 101 degrees (+/-0.5 degrees ) and a V...Si distance of 2.61 A. The absence of a second vanadium atom in the vicinity of the vanadium oxide cluster further subverts the classical assignment of the 920 cm(-1) Raman band to a V-O-V related vibration. The EXAFS results combined with structural modeling using Cerius(2) software lead to structural constraints, which imply a similar V-O(b)-M(support) interaction for Nb(2)O(5) and ZrO(2) as well. The V-O(b) and the V...M(support) distances depend on the geometry of each support surface. The results show that the classical model with three V-O(b)-M(support) bonds could not be experimentally observed with EXAFS under the applied measuring conditions. Additional experiments with IR and Raman spectroscopy under experimental conditions mimicking those of the EXAFS measurements reveal the presence of V-OH groups, giving further support for the presence of a O=V(OH)(2)-O(b)-M moiety at the support surface.  相似文献   

3.
A quantitative method based on UV-vis diffuse reflectance spectroscopy (DRS) was developed that allows determination of the fraction of monomeric and polymeric VO(x) species that are present in vanadate materials. This new quantitative method allows determination of the distribution of monomeric and polymeric surface VO(x) species present in dehydrated supported V(2)O(5)/SiO(2), V(2)O(5)/Al(2)O(3), and V(2)O(5)/ZrO(2) catalysts below monolayer surface coverage when V(2)O(5) nanoparticles are not present. Isolated surface VO(x) species are exclusively present at low surface vanadia coverage on all the dehydrated oxide supports. However, polymeric surface VO(x) species are also present on the dehydrated Al(2)O(3) and ZrO(2) supports at intermediate surface coverage and the polymeric chains are the dominant surface vanadia species at monolayer surface coverage. The propane oxidative dehydrogenation (ODH) turnover frequency (TOF) values are essentially indistinguishable for the isolated and polymeric surface VO(x) species on the same oxide support, and are also not affected by the Br?nsted acidity or reducibility of the surface VO(x) species. The propane ODH TOF, however, varies by more than an order of magnitude with the specific oxide support (ZrO(2) > Al(2)O(3) > SiO(2)) for both the isolated and polymeric surface VO(x) species. These new findings reveal that the support cation is a potent ligand that directly influences the reactivity of the bridging V-O-support bond, the catalytic active site, by controlling its basic character with the support electronegativity. These new fundamental insights about polymerization extent of surface vanadia species on SiO(2), Al(2)O(3), and ZrO(2) are also applicable to other supported vanadia catalysts (e.g., CeO(2), TiO(2), Nb(2)O(5)) as well as other supported metal oxide (e.g., CrO(3), MoO(3), WO(3)) catalyst systems.  相似文献   

4.
UV-Raman spectroscopy was used to study the molecular structures of TiO2 or ZrO2-supported vana-dium oxide catalysts.The real time reaction status of soot combustion over these catalysts was de-tected by in-situ UV-Raman spectroscopy.The results indicate that TiO2 undergoes a crystalline phase transformation from anatase to rutile phase with the increasing of reaction temperature.However,no obvious phase transformation process is observed for ZrO2 support.The structures of supported va-nadium oxides also depend on the V loading.The vanadium oxide species supported on TiO2 or ZrO2 attain monolayer saturation when V loading is equal to 4(4 is the number of V atoms per 100 support metal ions).Interestingly,this loading ratio(V4/TiO2 and V4/ZrO2) gave the best catalytic activities for soot combustion reaction on both supports(TiO2 and ZrO2).The formation of surface oxygen com-plexes(SOC) is verified by in-situ UV Raman spectroscopy and the SOC mainly exist as carboxyl groups during soot combustion.The presence of NO in the reaction gas stream can promote the pro-duction of SOC.  相似文献   

5.
The influence of the oxide support (i.e., Al2O3, Nb2O5, SiO2, and TiO2,) on the surface properties, reduction and oxidation properties, acid-base properties, and catalytic activity of supported indium oxide catalysts has been investigated by temperature-programmed reduction/oxidation, thermogravimetry coupled to differential scanning calorimetry, ammonia and sulfur dioxide adsorption calorimetry, and reduction of NOx by ethene in highly oxygen-rich atmosphere. Two series of In2O3-containing catalysts at low (approximately 3 wt %) and at theoretical geometric monolayer (from 20 to 40 wt %) In2O3 content were prepared and their properties were compared with unsupported In2O3 material. Supports able to disperse the In2O3 aggregates with high In stabilization gave rise to active catalytic systems. Among the studied oxide supports, Al2O3 and, to a lower extent, TiO2 were found to be the best supports for obtaining active de-NOx catalysts.  相似文献   

6.
Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane catalytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These catalysts were characterized with N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Methane conversion varied in a large range depending on supports or Mn loading. Al2O3 supported 15% Mn catalyst exhibited better activity toward methane catalytic oxidation. The manganese state and oxygen species played an important role in the catalytic performance,  相似文献   

7.
UV-Raman spectroscopy was used to study the molecular structures of TiO2 or ZrO2-supported vanadium oxide catalysts. The real time reaction status of soot combustion over these catalysts was detected by in-situ UV-Raman spectroscopy. The results indicate that TiO2 undergoes a crystalline phase transformation from anatase to rutile phase with the increasing of reaction temperature. However, no obvious phase transformation process is observed for ZrO2 support. The structures of supported vanadium oxides also depend on the V loading. The vanadium oxide species supported on TiO2 or ZrO2 attain monolayer saturation when V loading is equal to 4 (4 is the number of V atoms per 100 support metal ions). Interestingly, this loading ratio (V4/TiO2 and V4/ZrO2) gave the best catalytic activities for soot combustion reaction on both supports (TiO2 and ZrO2). The formation of surface oxygen complexes (SOC) is verified by in-situ UV Raman spectroscopy and the SOC mainly exist as carboxyl groups during soot combustion. The presence of NO in the reaction gas stream can promote the production of SOC.  相似文献   

8.
RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99%) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable ability of RuO2-based catalysts to oxidize CH3OH to HCHO at unprecedented low temperatures introduce significant opportunities for new routes to complex oxygenates, including some containing C-C bonds, using methanol or ethanol as intermediates derived from natural gas or biomass.  相似文献   

9.
The thermal decomposition of hydrogen peroxide, H(2)O(2), was determined in aqueous suspensions of SiO(2), Al(2)O(3), TiO(2), CeO(2), and ZrO(2) nanometer-sized particles. First-order kinetics were observed for the decomposition in all cases. Temperature dependence studies found that the activation energy was 42 +/- 5 kJ/mol for the overall decomposition of H(2)O(2) independent of the type of oxide. Oxide type had a strong effect on the pre-exponential rate term with increasing rate in the order of SiO(2) < Al(2)O(3) < TiO(2) < CeO(2) < ZrO(2). The rate coefficient for H(2)O(2) decomposition increases with increasing surface area of the oxide, but the number or efficiency of reactive sites rather than the total surface area may have the dominant role. Very efficient scavengers for OH radicals in the bulk liquid are not able to prevent formation of molecular oxygen, the main H(2)O(2) gaseous decay product, suggesting that decomposition occurs on the oxide surfaces. The decomposition of H(2)O(2) in the gamma-radiolysis of water is enhanced by the addition of ceramic oxides, possibly due to excess formation of hydrated electrons from energy deposited in the solid.  相似文献   

10.
Mixed Nb-Mo oxides were prepared by solid-state reaction of Nb(V) and Mo(VI) oxides at 973-1123 K. Optimal conditions were determined for the formation of the Mo3Nb2O14 compound. As established by Rietveld refinement of the powder X-ray diffraction patterns, the Mo3Nb2O14 oxide has the tetragonal cell with a = 23.150(6) A and c = 3.998(4) A and a tunnel structure similar to that of the Mo5O14 oxide. The solids were characterized by several physical techniques, including scanning and transmission electron microscopy, FT-IR, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and electron spin resonance spectroscopy. It has been shown that the Mo3Nb2O14 solid prepared in air at 973-1073 K after cooling to room temperature contains high amounts of Mo(V) species (ca. 1% of total molybdenum). The presence of paramagnetic species correlates with the intense green color of the solids and the strong d-d transition band in the UV-visible spectra, typical for the d1 species. The amount of paramagnetic species does not depend on the solid annealing and/or on the small variations of its composition. Neither is it related to the oxygen release upon the solid heating, being therefore an intrinsic property of the Mo3Nb2O14 oxide. The unusual stabilization of reduced Mo species in the highly oxidizing conditions was explained by the substitution disorder between Nb and Mo atoms. It is supposed that a configuration containing mu3 oxygen bonded to three Mo(VI) atoms is unstable and decomposes, leading to a Mo(V) center and a hole in the valence band.  相似文献   

11.
Neutral vanadium, niobium, and tantalum oxide clusters are studied by single photon ionization employing a 26.5 eV/photon soft x-ray laser. During the ionization process the metal oxide clusters are almost free of fragmentation. The most stable neutral clusters of vanadium, niobium, and tantalum oxides are of the general form (MO2)0,1(M2O5)y. M2O5 is identified as a basic building unit for these three neutral metal oxide species. Each cluster family (Mm, m=1,...,9) displays at least one oxygen deficient and/or oxygen rich cluster stoichiometry in addition to the above most stable species. For tantalum and niobium families with even m, oxygen deficient clusters have the general formula (MO2)2(M2O5)y. For vanadium oxide clusters, oxygen deficient clusters are detected for all cluster families Vm (m=1,[ellipsis (horizontal)],9), with stable structures (VO2)x(V2O5)y. Oxygen rich metal oxide clusters with high ionization energies (IE>10.5 eV, 118 nm photon) are detected with general formulas expressed as (MO2)2 (M2O5)y O1,2,3. Oxygen rich clusters, in general, have up to three attached hydrogen atoms, such as VO3H1,2, V2O5H1,2, Nb2O5H1,2, etc.  相似文献   

12.
Density functional theory study of small vanadium oxide clusters   总被引:2,自引:0,他引:2  
Density functional theory is employed to study structure and stability of small neutral vanadium oxide clusters in the gas phase. BPW91/LANL2DZ level of theory is used to obtain structures of VOy (y=1-5), V2Oy (y=2-7), V3Oy (y=4-9), and V4Oy (y=7-12) clusters. Enthalpies of growth and fragmentation reactions of the lowest energy isomers of vanadium oxide molecules are also obtained to study the stability of neutral vanadium oxide species under oxygen saturated gas-phase conditions. Our results suggest that cyclic and cage-like structures are preferred for the lowest energy isomers of neutral vanadium oxide clusters, and oxygen-oxygen bonds are present for oxygen-rich clusters. Clusters with an odd number of vanadium atoms tend to have low spin ground states, while clusters with even number of vanadium atoms have a variety of spin multiplicities for their ground electronic state. VO2, V2O5, V3O7, and V4O10 are predicted to be the most stable neutral clusters under the oxygen saturated conditions. These results are in agreement with and complement previous gas-phase experimental studies of neutral vanadium oxide clusters.  相似文献   

13.
Transition-metal oxide clusters of the form M(n)O(m) (+)(M=V,Nb,Ta) are produced by laser vaporization in a pulsed nozzle cluster source and detected with time-of-flight mass spectrometry. Consistent with earlier work, cluster oxides for each value of n produce only a limited number of stoichiometries, where m>n. The cluster cations are mass selected and photodissociated using the second (532 nm) or third (355 nm) harmonic of a Nd:YAG (yttrium aluminum garnet) laser. All of these clusters require multiphoton conditions for dissociation, consistent with their expected strong bonding. Dissociation occurs by either elimination of oxygen or by fission, repeatedly producing clusters having the same specific stoichiometries. In oxygen elimination, vanadium species tend to lose units of O(2), whereas niobium and tantalum lose O atoms. For each metal increment n, oxygen elimination proceeds until a terminal stoichiometry is reached. Clusters having this stoichiometry do not eliminate more oxygen, but rather undergo fission, producing smaller M(n)O(m) (+) species. The smaller clusters produced as fission products represent the corresponding terminal stoichiometries for those smaller n values. The terminal stoichiometries identified are the same for V, Nb, and Ta oxide cluster cations. This behavior suggests that these clusters have stable bonding networks at their core, but additional excess oxygen at their periphery. These combined results determine that M(2)O(4) (+), M(3)O(7) (+), M(4)O(9) (+), M(5)O(12) (+), M(6)O(14) (+), and M(7)O(17) (+) have the greatest stability for V, Nb, and Ta oxide clusters.  相似文献   

14.
负载型氧化锆催化剂上甲醇脱氢制甲醛   总被引:6,自引:0,他引:6  
甲醇在无氧条件下脱氢,可以制得含水量极低的甲醛。在上述反应中,主要采用以硅胶为载体的负载型氧化物催化剂,其中以周期表ⅠB和ⅡB族金属,如铜、银或锌为主要组分。这些金属的氧化物在高温下易还原、烧结和表面积炭而使催化剂失活。添加P,S,Se或Te等组分作为助催化剂,在一定程度上可以改善催化性能。最近的发展倾向是采用非负载的碱金属盐作为催化剂,如Na_2CO_3,Na_2MoO_4,或Na_xLi_(1-x)AlO_2(0≤x≤1)。这类催化剂要求过高的反应温度,如高于650℃,甚至900℃条件下使用。  相似文献   

15.
SiO2负载H6PMo9V2Nb1O40杂多酸的制备与表征   总被引:1,自引:0,他引:1  
张艳红  钟顺和 《分子催化》2005,19(4):246-250
用经典酸化与乙醚萃取相结合的方法,制得了H6PMo9V2Nb1O40杂多酸,并采用等体积浸渍法将其负载到载体SiO2上,通过循环伏安、XRD、BET、TG-DTA、IR和UV-vis等技术的综合表征表明:H6PMo9V2Nb1O40具有Keggin型杂多酸结构和较强的氧化还原性能,且氧化还原过程可逆性好;这种杂多酸与SiO2载体表面通过端氧和桥氧发生键合作用,负载到SiO2上的杂多酸其比表面积显著增大,并保持了原有的Keggin结构和热稳定性。  相似文献   

16.
UV-Raman spectroscopy was used to study the molecular structures of TiO2 or ZrO2-supported vanadium oxide catalysts. The real time reaction status of soot combustion over these catalysts was detected by in-situ UV-Raman spectroscopy. The results indicate that TiO2 undergoes a crystalline phase transformation from anatase to rutile phase with the increasing of reaction temperature. However, no obvious phase transformation process is observed for ZrO2 support. The structures of supported vanadium oxides also depend on the V loading. The vanadium oxide species supported on TiO2 or ZrO2 attain monolayer saturation when V loading is equal to 4 (4 is the number of V atoms per 100 support metal ions). Interestingly, this loading ratio (V4/TiO2 and V4/ZrO2) gave the best catalytic activities for soot combustion reaction on both supports (TiO2 and ZrO2). The formation of surface oxygen complexes (SOC) is verified by in-situ UV Raman spectroscopy and the SOC mainly exist as carboxyl groups during soot combustion. The presence of NO in the reaction gas stream can promote the production of SOC. Supported by the National Natural Science Foundation of China (Grant Nos. 20473053, 20773163 and 20525621), the Beijing Natural Science Foundation (Grant No. 2062020), and the 863 Program of China (Grant No. 2006AA06Z346)  相似文献   

17.
The surface composition of Al(2)O(3), V(2)O(5), and aluminovanadate oxide, "V-Al-O", was studied by X-ray photoelectron spectroscopy (XPS), using Mg K(alpha) to reveal time-dependent irradiation damage of samples. Spectral parameters such as peak intensity and width and absolute and relative peak binding energies were evaluated along with the Auger parameter. Irradiation of Al(2)O(3) was found to cause partial dehydration of the surface hydroxide film, while sputter-cleaned alumina turned out to be resistant to X-rays. In V(2)O(5), a small fraction of V(4+) species was seen to form during X-ray exposure. X-ray induced damage in Al(2)O(3) and V(2)O(5) was compared to that caused by bombardment with 500 eV argon ions. The V-Al-O material which is used as a precursor of oxynitride catalysts for ammoxidation turned out to be most susceptible and could be damaged by low X-ray doses. An appreciable reduction from the V(5+) to the V(4+) formal oxidation state (the latter increases from 20 to 45% after 150 min time of exposure to Mg K(alpha) at 150 W) was found along with the decomposition of aluminum hydroxide which is believed to act as an amorphous support in this catalyst. Gas-phase analysis during X irradiation demonstrated desorption of oxygen and water molecules. X-ray induced damage is believed to be caused by electron-hole pair generation and Auger decay rather than by thermal effects since the sample surface temperature increased only slightly.  相似文献   

18.
Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.  相似文献   

19.
The structure, stability, and vibrational properties of isolated V2O5 clusters on the Al2O3(0001) surface have been studied by density functional theory and statistical thermodynamics. The most stable structure does not possess vanadyl oxygen atoms. The positions of the oxygen atoms are in registry with those of the alumina support, and both vanadium atoms occupy octahedral sites. Another structure with one vanadyl oxygen atom is only 0.12 eV less stable. Infrared spectra are calculated for the two structures. The highest frequency at 922 cm(-1) belongs to a V-O stretch in the V-O-Al interface bonds, which supports the assignment of such a mode to the band observed around 941 cm(-1) for vanadia particles on alumina. Removal of a bridging oxygen atom from the most stable cluster at the V-O-Al interface bond costs 2.79 eV. Removal of a (vanadyl) oxygen atom from a thin vanadia film on alpha-Al2O3 costs 1.3 eV more, but removal from a V2O5(001) single-crystal surface costs 0.9 eV less. Similar to the V2O5(001) surface, the facile reduction is due to substantial structure relaxations that involve formation of an additional V-O-V bond and yield a pair of V(IV)(d1) sites instead of a V(III)(d2)/V(V)(d0) pair.  相似文献   

20.
Inspired by surface species proposed to occur on heterogeneous catalysts novel oxovanadium(v) silsesquioxanes were synthesised. Reaction of a T8-silsequioxane containing two geminal OH groups with O=V(O(i)Pr)3 led to a dinuclear compound where the geminal disiloxide functions of two silsesquioxanes are bridging two O=V(O(i)Pr) moieties (2). Formation of 2 shows that--in contrast to proposals made for silica surfaces--in molecular chemistry a bidentate coordination of geminal siloxides to one vanadium centre is not favourable. With the background that species being doubly anchored to a support have been suggested to play active roles on V2O5/SiO2 catalysts an anionic complex has been prepared where a divalent dioxovanadium unit replaces one Si corner of a (RSiO1.5)8, cube (a Si-OH function remains pending) (3). 3 has been intensely investigated by vibrational spectroscopy, and to support assignments not only of the v(V=O) bands but also of the v(V-O-Si) bands, whose positions are of interest in the area of heterogeneous catalysis, isotopic enrichment studies and DFT calculations have been performed. The corresponding investigations were aided by the synthesis and analysis of a silylated derivative of 3, 4. Moreover, with regard to their potential as structural and spectroscopic models all complexes were characterised by single crystal X-ray diffraction. Finally, 2 and 3 were tested as potential catalysts for the photooxidation of cyclohexane and benzene with O2. While 2 shows a slightly higher activity than vanadylacetylacetonate, 3 leads to significantly increased turnover numbers for the conversion of benzene to phenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号