首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frontal Polymerization is a process that converts monomers into polymers by means of a propagating spatially localized reaction front. Such fronts exist with free-radical polymerization, where in the simplest case, a mixture of monomers and initiator is placed into a test tube and upon initiation of the reaction at one end of the tube, a self-sustained wave develops and propagates through the tube. Isothermal Frontal Polymerization (IFP), often referred to as interfacial gel polymerization, occurs due to the coupling of mass diffusion of the species and the gel effect. Utilizing the free volume theory of Vrentas and Duda for describing the self-diffusive behavior of the gel effect, we mathematically model and study this IFP process. We determine, both numerically and analytically, characteristics of the process including the propagation velocity of the reaction zone, the structure of the wave, and the distance traveled by the front before it breaks down due to reactions ahead of the front  相似文献   

2.
Frontal polymerization (FP) is a process in which a front propagates in a localized reaction zone, converting monomer into polymer through the coupling of thermal diffusion with the Arrhenius kinetics of an exothermic reaction. Fillers are added to control the rheological properties of the formulation and to enhance the mechanical properties of the product. However, the thermal and chemical effects of these fillers on the front propagation have not been thoroughly explored. Herein we report the thermal and chemical effects of fillers on free-radical frontal polymerization. It was found that fillers with high thermal diffusivities, such as milled carbon fiber and boron nitride increased the front velocity. Despite their high thermal diffusivities, fillers such as aluminum and alumina decreased the front velocity. This is likely due to the radical-scavenging ability of aluminum oxide, which was explored with clay minerals. It was found that the presence of water within clay fillers can also decrease the front velocity. To probe the chemical effects, acid-activated clay minerals were utilized. The results demonstrate that some fillers can increase front velocity through their high thermal diffusivities while others decrease it by acting as radical scavengers.  相似文献   

3.
Frontal polymerization is a process in which a localized reaction zone propagates from the coupling of thermal transport and the Arrhenius rate dependence of an exothermic polymerization; monomer is converted into polymer as the front passes through an unstirred medium. Herein we report the first study of charge transfer complexes (CTCs) as photo/thermal initiators for free-radical frontal polymerization. Front velocity was studied as a function of mole ratio between an aromatic amine, such as dimethyl-p-toluidine or dimethylaniline, and an iodonium salt. It was found that the front velocity reached a maximum at a certain mole ratio of amine to iodonium salt. The velocity remained constant upon increasing the ratio of amine to iodonium salt past this critical ratio. Fronts were also studied using N-phenyl glycine as an electron donor, but its utility was limited by low solubility. Lastly, the steric and electronic effects of the iodonium salt and counter anion were explored. It was found that CTCs using iodonium salts with less nucleophilic anions gave higher front velocities. In terms of intrinsic reactivity, the CTC composed of N,N-dimethyl-p-toluidine and bis[4-(tert-butyl)phenyl]iodonium tetra(nonafluoro-tert-butoxy)aluminate gave the highest front velocity per molal of iodonium salt.  相似文献   

4.
Frontal copolymerization is a process in which a spatially localized reaction zone propagates into a mixture of two monomers, converting them into a copolymer. In the simplest case of free‐radical copolymerization, a mixture of monomers and initiator is placed into a test tube. Reaction is initiated at one end of the tube, and a self‐sustained thermal wave, in which chemical conversion occurs, develops and propagates through the tube. We develop a mathematical model of the frontal copolymerization process and analytically determine the structure of the polymerization wave, the propagation velocity, maximum temperature, and degree of conversion of the monomers. Specifically, we examine their dependence on reactivity ratios as well as other kinetic parameters, monomer feed composition, and exothermicity of the reactions. Our analytic results are in good quantitative agreement with both direct numerical simulations of the model and experimental data, which are also presented in the paper.

Dependence of front velocity on monomer feed composition for different heat release parameters.  相似文献   


5.
We report the first synthesis of urethane–acrylate copolymers via free‐radical frontal polymerization. In a typical run, the appropriate amounts of the reactants (urethane–acrylate macromonomer and 2‐hydroxyethyl acrylate) and initiator (ammonium persulfate) were dissolved in dimethyl sulfoxide. Frontal polymerization was initiated by the heating of the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self‐propagate throughout the reaction vessel. Once it was initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the initiator concentration was investigated. The front temperatures were between 55 and 65 °C, depending on the persulfate concentration. Thermogravimetric analysis indicated that the urethane–acrylate copolymers had higher thermal stability than pure frontally prepared polyurethane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3018–3024, 2006  相似文献   

6.
Frontal polymerization of deep eutectic solvents (DESs) made with acrylic or methacrylic acid as the monomer and hydrogen bond donor was studied. Fronts with acrylic acid and choline chloride propagated more uniformly than with pure acrylic acid, so an exploration into how the DES affected frontal polymerization was performed. The hydrogen bond acceptor of the DES was replaced by several analogs to determine the effect on the DES front behavior. The analogs used were talc, DMSO, lauric acid, and stearic acid, which acted as a heat sink, inert diluent, hydrogen bonding diluent, and inert phase change material, respectively. None of the methacrylic acid‐analog systems were able to sustain a front. While the acrylic acid‐analog systems did sustain a front (with the exception of stearic acid), none of the fronts replicated the acrylic acid DES behavior. The acrylic acid–talc sample behaved more violently—like pure acrylic acid polymerization—than the acrylic acid DES, and the DMSO and lauric acid samples produced slower fronts than that of the acrylic acid DES. We propose that the reactivity of the acrylic acid and methacrylic acid is enhanced in the DES. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4046–4050  相似文献   

7.
自蔓延波聚合研究进展   总被引:2,自引:0,他引:2  
波聚合是指靠自身反应放热产生的热波维持反应进行而将单体转化为聚合物的聚合方法。由于波聚合不需要外界持续供热、无溶剂排放和反应设备简单,是一种节能无污染的低成本材料制备工艺,极具应用前景。本文综述了从发现波聚合至今已取得的研究成果,包括波聚合机理、聚合波产生并自蔓延的条件、波结构、传播速度、传播模式以及产物特征,并对波聚合工艺用于高分子材料的制备进行了评述。  相似文献   

8.
Frontal polymerization is a process in which a localized reaction zone propagates through a monomer reactant mixture, leaving a polymer product in its wake, and is the result of the coupling of the thermal transport and Arrhenius dependence of the exothermic polymerization. Under most conditions, a planar front is stable. However, for multifunctional acrylates at room temperature, fronts may propagate in a helical fashion along the axis of the reactor. This front propagation is typical of what is called a spin mode, in which the subsequent polymer sample has alternating spiral patterns of low and high monomer conversion evident on the sample surface. For the first time, we demonstrate that magnetic resonance imaging on a submillimeter scale can be used to show that the spiral patterns are not restricted to the sample surface but are distributed throughout the volume. Samples were soaked in water, and the transverse proton relaxation times were imaged. The results suggest proton mobility is smaller in the high‐conversion region in which the hot spot propagated than in the low‐conversion region. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1075–1080, 2001  相似文献   

9.
Frontal polymerization is a method of converting monomer(s) to polymer via a localized reaction zone that propagates from the coupling of thermal diffusion with the Arrhenius kinetics of an exothermic reaction. Several factors affect front velocity and temperature with the role of monomer functionality being of particular interest in this study. Polymerizing a di and triacrylate of equal molecular weight per acrylate revealed that as the proportion of triacrylate was increased the velocity and temperature increased. This is attributed to increased crosslinking and autoacceleration. Comparing several different acrylate monomers, both neat and diluted with dimethyl sulfoxide (DMSO) so as to maintain constant acrylate group concentration, shows that velocity increases with increased functionality from mono to difunctional monomers. This trend breaks when applied to tri‐ and tetraacrylates, with fronts containing trifunctional monomer being the fastest. Acrylates containing hydroxyl functionality, as in the case of pentaerythritol‐based triacrylates, are slower than acrylates without. This is attributed to a chain‐transfer event and was tested using octanol and a hydroxyl‐free acrylate. It has also been shown that small amounts of water cause a lowering of front velocity due to energy lost via vaporization, which lowers the front temperature. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 982–988  相似文献   

10.
Frontal polymerization (FP) is a mode of converting a monomer into a polymer via a localized reaction zone that propagates through the monomer. In this study, segmented polyurethane was successfully prepared by FP. The reactants, poly (propylene oxide) glycol, 2, 4-toluene diisocyanate and 1,4-butanediol and the catalyst stannous caprylate, were mixed together at an initial temperature in the presence of dimethylbenzene (as the solvent). The reactions were thermally ignited at one end of the tubular reactor, and the resultant hot fronts propagated throughout the reaction reactor. No further energy was required for polymerization to occur. The effect factors of front velocity, stannous caprylate concentration and temperature on the FP, along with comparison of FP with bulk polymerization, were thoroughly investigated. Fourier transform infrared and differential scanning calorimetry were employed to characterize polyurethane (PU). The polymer materials obtained by FP displayed features similar to those obtained by batch polymerization. The reaction time of FP for preparing PU was lower than that of BP.  相似文献   

11.
Polymeric products are largely used for consolidation of stone in the field of cultural heritage. Nevertheless, the main problem of polymeric compounds is related to their macromolecular nature, it being difficult for a polymer to penetrate inside the pores which may have a very small diameter. These considerations are the starting points for in situ polymerization. According to this technique, not the pre‐formed polymer, but the monomer is introduced into the stone and it is polymerized in situ in a subsequent step. Frontal polymerization (FP) is a particular technique in which the heat released by the exothermal reaction of monomer to polymer conversion is exploited to promote the formation of a hot traveling front able to propagate and self‐sustain the reaction. In the present work, FP is performed inside the pores of the stone and the results lead to the conclusion that the hot front is still active in the presence of an inorganic material which dissipates partially the heat released during the polymerization. In addition some recent applications of FP are discussed in comparison with the traditional polymerization for the in situ consolidation and protection of stones. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Frontal polymerization of cobalt nitrate containing metal-complex monomers with acryl-amide, compared to the frontal polymerization of liquid monomers, has several peculiarities with intricate (three- and two-stepped) structure of heat polymerization waves. Also, density increase elevates monotonically the upper-limit temperature of heat waves, broadens the gradient of temperature profiles, as well as changes the rate of the front propagation non-monotonically.Presumably, the surface tension energy and wetting power of crystalline monomers play an important role in the dynamics of propagation of heat waves as it was shown by the specially designed experiments.Experimentally, three ranges of thermal regimes were determined: (i) the range where stationary (steady-state) heat waves exist; (ii) non-steady-state range; and (iii) the range where no wave regimes are possible to exist.In the form of spin and other non-linear structures, one-, two-, three- and multi-set regimes were ascertained in non-steady-state range.  相似文献   

13.
In this study, poly(N-methylolacrylamide)/polymethylacrylamide (PNMA/PMAA) hybrids were produced successfully by frontal free-radical polymerization at ambient pressure. In a typical run, the appropriate amounts of reactants (N-methylolacrylamide, NMA; methylacrylamide, MAA) and initiator (ammonium persulfate) were dissolved in dimethyl sulfoxide at ambient temperature. Frontal polymerization (FP) was initiated by heating the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self-propagate throughout the reaction vessel. Once initiated, no further energy was required for polymerization to occur. The dependences of the front velocity and front temperature on the initiator concentration, reactant dilution, and NMA/MAA components were thoroughly investigated. The front temperatures were between 69 and 116 °C, depending on the persulfate concentration. We have also investigated the FP of PNMA/PMAA hybrids with N-methyl-2-pyrrolidone as solvent. Results show that FP can be exploited as a means for the preparation of PNMA/PMAA hybrids with the potential advantage of higher throughput compared to the traditional mode.  相似文献   

14.
自由基活性聚合的进展   总被引:1,自引:0,他引:1  
自由基活性聚合是人们在们在近年来探索的一类新的聚合反应.本文简要地综述了这类反应的进展.  相似文献   

15.
Ring‐Opening Metathesis Polymerization (ROMP) and Atom‐Transfer Radical Polymerization (ATRP) were carried out simultaneously under microemulsion conditions with 1st generation Grubbs catalyst playing a double role: ROMP initiator and ATRP controlling agent. Starting from two distinct microemulsions—one containing the monomers and the other the catalyst—well‐defined composite nanoparticles with z‐average hydrodynamic diameter smaller than 50 nm were prepared. Depending on the monomers droplet composition, homopolymers blends or graft‐copolymers were synthesized in a one‐pot, one‐step, one‐catalyst approach. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4014–4027, 2009  相似文献   

16.
We report a new facile strategy for quickly synthesizing poly(2‐hydroxyethyl acrylate‐co‐vinyl versatate) amphiphilic gels with excellent physicochemical properties by frontal free‐radical polymerization. The appropriate amounts of 2‐hydroxyethyl acrylate, vinyl versatate (VeoVa 9) and ammonium persulfate initiator were mixed together at ambient temperature in the presence of N‐methyl‐2‐pyrrolidone as the solvent medium. Frontal polymerization (FP) was initiated by heating the wall of the tube with a soldering iron. Once initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the initiator concentration was investigated. The front temperatures were between 132 and 157 °C, depending on the initiator concentration. The morphology, swelling rate, and swelling behavior of amphiphilic gels prepared via FP were comparatively investigated on the basis of scanning electron microscopy, water contact angle, and swelling measurements. Results show that the amphiphilic gels prepared via FP behave with good swelling capacity both in water and organic solvents. The FP can be exploited as an alternative means for synthesis of amphiphilic gels with additional advantages of fast and efficient way. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 823–831, 2010  相似文献   

17.
Stimuli-responsive polymers are macromolecular materials that undergo changes in response to small external stimuli in the environmental conditions. Among stimuli-responsive hydrogels are several polyacrylamides. Frontal polymerization is a fast, easy and inexpensive polymerization technique used for the synthesis of macromolecules.Aim of this work was the evaluation of the Frontal polymerization technique as new method for the preparation of controlled release dosage forms in which drug loading and polymer preparation occur together, as well as the possibility of obtaining more dosage units by a unique preparation. Hydrogels based on polyacrylamide containing diclofenac sodium salt were prepared using the Frontal polymerization and compared with similar systems obtained by the classic batch method. Polymers characterized by three different degree of cross-linking were prepared. The stability of the drug during the sample preparation was evaluated by IR analysis. The obtained samples were characterized in terms of drug content, morphology, in vitro drug release and swelling properties. Samples were studied also divided into disks. The results show that hydrogels based on polyacrylamide can be prepared by Frontal polymerization; these samples show similar properties to those obtained by batch polymerization. The drug is stable in the polymerization reaction conditions. Samples characterized by the lowest degree of cross-linking show drug loading values always higher than samples with the highest one regardless of the preparation method employed. The swelling ratio decreases as the degree of cross-linking increases. Loaded samples swell more than drug free ones. From a single preparation of hydrogel, three disks showing same drug content and in vitro release behaviour can be obtained and thus they can be used as three single dosage units.  相似文献   

18.
The effect of the thermally initiated frontal polymerization of acrylamide complexes of transition metal nitrates such as those of Mn(II), Co(II), Ni(II), and Zn(II) was disclosed. The rate of the polymerization front propagation was found to be 2?9 × 10?2cm/c, depending appreciably on sample diameter and density, as well as the presence of radical inhibitor additives. The rate was found to decrease in the series: Co(II) > Ni(II) > Mn(II) > Zn(II). Polymerization was shown to occur directly in the melting region of a complex at 80–100°C to give three-dimensional polymers. A mechanism of the polymerization being initiated with the products of the partial nitrate group decomposition was proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
前线聚合(Frontal Polymerization,FP)是一种以自身反应热为推动力,通过反应区域连续移动,最终实现整体聚合转化的聚合反应模式。本文综述介绍了前线聚合的定义、反应机理、基本形成条件及主要特点。  相似文献   

20.
Frontal polymerization (FP) is a process in which a spatially localized reaction zone propagates into a monomer converting it into a polymer. Two types of FP processes have been observed experimentally. One is exothermic FP, which occurs due to diffusion of heat released in the polymerization reactions and which we have previously studied. The other is an isothermal FP process, also referred to as interfacial gel polymerization, which is due to mass diffusion of the species coupled with the gel effect. In a previous work we proposed and studied analytically a model of interfacial gel polymerization. That work discussed the case of an excessive amount of initiator in the initial mixture. In addition, it was assumed that the parameters of the problem were such that the steady‐state assumption (SSA) concerning the total concentration of radicals holds not only in the bulk region, which is typically the case, but also in the gel region, which may limit the applicability of the results. In this work we seek to resolve the limitations associated with these two main assumptions. We relax the SSA in the gel region, analyze the various situations of initiator consumption for a weak gel effect, and study the case of a strong gel effect. We obtain analytical results, including the time‐dependent propagation velocity of the reaction zone and the distance traveled by the front before it breaks down due to reactions ahead of the front, which are in good agreement with our numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号