首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A carboxy terminated poly(butylene terephthalate) (PBT) was obtained by quantitative reaction of a hydroxy terminated PBT with succinic anhydride. Subsequent melt mixing with an amino group terminated PA12 did not result in the formation of linking groups between the components. Instead, the formation of succinimide terminal groups on the polyamide-12 (PA12) chains was observed.The same conversion in presence of a bifunctional coupling agent possessing one oxazoline and one oxazinone group yielded PA12/PBT block copolymers in high extent. DSC and microscopic measurements showed that a phase separated morphology is predominant.  相似文献   

2.
新型sPS/PA6/SsPS-H塑料合金的性能和形态结构   总被引:2,自引:1,他引:2  
研究新型sPS PA6 SsPS H塑料合金的力学性能和微观形态结构 .间规聚苯乙烯 (sPS)的磺化产物磺化间规聚苯乙烯 (SsPS H)的加入明显地改善了sPS PA6(聚酰胺 6)二组分合金的力学性能 ,在sPS PA6 SsPS H重量组成为 80 2 0 5时 ,三组分合金的冲击强度最大 ,为 1 5 6kJ m2 ,约为纯sPS冲击强度的 3倍 DMA和SEM结果表明 ,SsPS H对sPS和PA6共混有良好的增容作用 ,它起到了降低合金的微相尺寸和加强相间界面粘结的作用 .此外 ,FTIR结果还表明SsPS H和PA6之间存在特殊相互作用 ,其作用方式是通过SsPS H的磺酸基将其质子转移给PA6酰胺基的氮  相似文献   

3.
Polystyrene/polybutadiene (PS/PB) blends with different plastic/rubber ratios were prepared by melt mixing. A detailed investigation on phase morphology development of 30/70 wt.% PS/PB blends as a function of processing conditions was quantitatively analyzed. Morphology is developed at the initial stages of mixing. Suitable blending conditions resulting in optimum phase morphology were obtained at 180 °C, 60 rpm and at 8 min mixing time. Phase morphologies of the blends were also studied as a function of composition. Mechanical properties of the blends were measured. Attempts were made to correlate the morphologies with the properties. Parallel-Voids model has been applied to characterize phase morphology of these blends.  相似文献   

4.
The effect of a small admixture of high‐density polyethylene (HDPE) with a high or low viscosity to polystyrene/polyamide (PS/PA) blends of various compositions was studied. PS/PA blends with composition near 50/50 form sheet‐like or fiber‐like morphology at mixing that passes to the cocontinuous structure during compression molding. Ternary PS/PA/HDPE blends with PS/PA ratio about 50/50 show similar behavior. Generally, neither continuity nor shape of PS and PA phases was changed qualitatively by the addition of a small amount of HDPE. In agreement with existing rules for ternary blends, HDPE particles prefer a contact with PS phase to PA phase. On the other hand, none of these rules explains why a number of small HDPE subinclusions were dispersed into PS particles instead of HDPE‐PS core‐shell structure with a lower Gibbs free energy. Quantitative evaluation of the size of PA particles in blends with PS matrix showed that the previously proposed rule stating, that the addition of a small amount of a third immiscible component leads to a strong decrease in the size of dispersed particles, was not valid for the blends studied in this work. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2158–2170, 2009  相似文献   

5.
In this paper a polypropylene (PP) resin with controlled rheology was selected as polymer matrix and modified by melt mixing with polystyrene (PS) which has certain processing compatibility with PP. The effect of the addition of polyperoxide (PPX), peroxide modified PS particles (PS‐PPX), and maleic anhydride (MAH) to the PP/PS blend during melt mixing on the rheological behavior and morphology of the PP/PS blends has been carefully studied.  相似文献   

6.
Glycerol-plasticized starch (TPS)/polyamide 12 (PA12) blends were processed by melt mixing using two types of interfacial agent, i.e. diglycidyl ether of bisphenol A and a poly(ethylene-co-butyl acrylate-co-maleic anhydride) copolymer. Morphologies of the blends were tailored from the nature and amount of the interfacial agents. The average size of the dispersed phase was shown to decrease with the incorporation of the reactive agents and was proved to respect models, usually employed for conventional blends, for size predictions of the dispersed phase. By means of rheological experiments, it has been investigated whether the size reduction of the dispersed phase was coming from the compatibilization of the blend or from the viscosity changes due to chain extension in the matrix. The influence of the coupling agents on the viscoelastic behavior of the blend was characterized. Both interfacial agents led to increase the absolute complex viscosity but in the case of diepoxy reactive agent, the Newtonian flow behavior of complex viscosity totally disappeared in the low-frequency region. Mechanical properties of the TPS/PA12 blends were characterized and were proved to be strongly impacted by the use of interfacial agents. Elongation at break was enhanced as a consequence of a better adhesion between the matrix and the dispersed phase, whereas a decrease of the Young’s modulus was observed with increasing DGEBA content. Polyamide 12 crystallization in TPS/PA12 blends was found to be strongly dependent on DGEBA content while the introduction of maleic anhydride-grafted copolymer had no influence.  相似文献   

7.
A facile synthetic pathway to miktoarm star copolymers with multiple arms has been developed by combining reversible addition–fragmentation chain transfer (RAFT) arm‐first technique and aldehyde–aminooxy “click” coupling reaction. Star polystyrene (PS) with aldehyde functionalized core was initially prepared by RAFT arm‐first technique via crosslinking of the preformed linear macro‐RAFT agents using a newly designed aldehyde‐containing divinyl compound 6,6′‐(ethane‐1,2‐diylbis(oxy))bis(3‐vinylbenzaldehyde) (EVBA). It was then used as a multifunctional coupling agent for the subsequent formation of the second generation poly(ethylene glycol) (PEG) arms via the click coupling reaction between its aldehyde groups and aminooxy‐terminated PEGs. The possible formation of PS‐PEG miktoarm star copolymer with Janus‐like segregated structure in cyclohexanone was also investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3323–3330, 2010  相似文献   

8.
The morphology of polyvinyl chloride/polystyrene (PVC/PS) blend samples with different mass ratios, preparedby means of solution casting and melt mixing, have been successfully examined by electron microprobe analysis (EMP). Thisexperiment was performed in a scanning electron microscope attached to an energy dispersive X-ray analyzer. Differentialscanning calorimetry was also used to investigate the phase separation of the blends. The results show that PVC and PS areincompatible and the blends have sea-islands phase structures. Blends prepared via melt mixing have finer phase-dispersionthan those prepared via solution casting.  相似文献   

9.
This study investigates the role played by two different interface agents on the basis of atactic polypropylene in the continuous/disperse phase polypropylene/polyamide‐6 (PP/PA6) system. The two agents used were obtained at the authors' laboratories from an atactic polypropylene byproduct derived from industrial polymerization reactors and consist of two grafted polymers containing either succinic anhydride (a‐PP‐SA) or both succinyl‐fluorescein and succinic anhydride grafted groups (a‐PP‐SF/SA). The role of these grafted polymers as compatibilizers in PP/PA6 polymer blends has been confirmed in previous investigations on the basis of their macroscopic behavior. This work investigates the thermal study of these blends where polypropylene acts as the polymer matrix and polyamide as the dispersed phase. Under isothermal conditions, thermal analysis agrees with the changes in the overall system behavior caused by the presence of the interface agents. These aspects were confirmed by polarized light microscopy that showed the morphology of the blends before and after modification with a‐PP‐SA or a‐PP‐SF/SA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1307–1315, 2002  相似文献   

10.
To be competitive, most blends need compatibilizers, usually copolymers with a blocky architecture, the chains of which cover the interfaces between the blend phases, refining the phase morphology and improving the interface strength. When the blend components are suitably functionalized, such copolymers can be conveniently generated in situ, in processes of reactive blending. Normally, graft copolymers are created. The polymer–polymer coupling proceeds exclusively in the interfaces. This interface grafting is (i) pivotal in the design of modern blend systems and (ii) an interesting route towards novel copolymers. The complex kinetics of interface grafting in blend melts have so far attracted little attention. In a model study, amino terminated polyamide 12 (PA) was grafted in the melt onto heavily maleinated polystyrene (SMA; S: styrene and MA: maleic anhydride). Anhydride and amino functions react at high temperatures fast and irreversibly by imide condensation. A series of SMA/PA blends differing in composition and PA chain lengths was investigated, with the aim of driving the grafting to high conversions so a pure graft copolymer SMAgPA would result, instead of an SMA/PA/SMAgPA blend. However, a pure copolymer was never obtained. The grafting remained incomplete, except with very short-chained PA and only at equal weight fractions of SMA and PA. More importantly, the SMA chains were never grafted evenly. Instead, “overgrafted” and “undergrafted” chains SMAgPA coexisted in one and the same product. It appears that the SMAgPA chains form an auto-inhibitory barrier in the interfaces that prevents random grafting. Grafting proceeds to high conversion only in SMA/PA blends with a co-continuous phase morphology where the interfaces are constantly torn apart and renewed, during melt blending, so the reaction is constantly reactivated. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
This paper reports on the interfacial behaviour of block and graft copolymers used as compatibilizers in immiscible polymer blends. A limited residence time of the copolymer at the interface has been shown in both reactive blending and blend compatibilization by preformed copolymers. Polystyrene (PS)/polyamide6 (PA6), polyphenylene oxide (PPO)/PA6 and polymethylmethacrylate (PMMA)/PA6 blends have been reactively compatibilized by a styrene-maleic anhydride copolymer SMA. The extent of miscibility of SMA with PS, PPO and PMMA is a key criterion for the stability of the graft copolymer at the interface. For the first 10 to 15 minutes of mixing, the in situ formed copolymer is able to decrease the particle size of the dispersed phase and to prevent it from coalescencing. However, upon increasing mixing time, the copolymer leaves the interface which results in phase coalescence. In PS/LDPE blends compatibilized by preformed PS/hydrogenated polybutadiene (hPB) block copolymers, a tapered diblock stabilizes efficiently a co-continuous two-phase morphology, in contrast to a triblock copolymer that was unable to prevent phase coarsening during annealing at 180°C for 150 minutes.  相似文献   

12.
Poly(phenylene ether) (PPE)/poly(amide-6) (PA6) blends are examined in light of the information provided by two-dimensional chromatography and chemorheology. Chromatography provides a snapshot of the blend composition in the finished material, while rheology presents us with a direct insight into the reactions taking place in the melt. Block copolymer formation is chromatographically confirmed for the blends prepared with a coupling agent, but also for the blend prepared without any coupling agent. No co-continuous morphology is observed by scanning electron microscope. Instead, a coarse structure of PPE droplets in the PA6 matrix is obtained for the blend prepared without coupling agent. This is explained by the combined effects of the low viscosity of PA6 and the inherently formed copolymers. The PPE domains are smaller in the blends prepared with the coupling agents. Their size is correlated with the copolymer formation, surface tension, and interphase relaxation time. The data evidence a complex system where reactions resulting in the formation of copolymer via coupling or grafting take place together with the extension of the PPE and condensation growth of the PA6 polymers.  相似文献   

13.
侧链液晶离聚物对PA1010/PP共混体系的增容作用   总被引:2,自引:0,他引:2  
将聚酰胺(PA1010)、聚丙烯(PP)和热致型侧链液晶离聚物(SLCI)进行熔融共混,采用FTIR,SEM,DSC,WAXD研究测定了共混物中的相互作用,用形态结构,热行为和结晶行为,系统地研究了SLCI对PA101/PP共混物的增容作用。结果表明,SLCI有效地改善了PA1010/PP共混物的形态结构,增强了PA1010与PP链间的相互作用,使PA1010/PP熔点升高,结晶度提高。  相似文献   

14.
Binary blends of poly(l-lactide) (PLLA) and poly(butylene terephthalate) (PBT) containing PLLA as major component were prepared by melt mixing. The two polymers are immiscible, but display compatibility, probably due to the establishment of interactions between the functional groups of the two polyesters upon melt mixing. Electron microscopy analysis revealed that in the blends containing up to 20% of poly(butylene terephthalate), PBT particles are finely dispersed within the PLLA matrix, with a good adhesion between the phases. The PLLA/PBT 60/40 blend presents a co-continuous multi-level morphology, where PLLA domains, containing dispersed PBT units, are embedded in a PBT matrix. The varied morphology affects the mechanical properties of the material, as the 60/40 blend displays a largely enhanced resistance to elongation, compared to the blends with lower PBT content.  相似文献   

15.
尼龙6/多单体接枝聚丙烯合金中的微相分离结构   总被引:6,自引:1,他引:5  
近年来,有关高聚物微相分离结构的研究不断深入,发现了许多新的微相分离形态.但这些研究几乎全部集中在嵌段或接枝共聚物上,即共聚物本身具有的链结构导致了微相分离结构.  相似文献   

16.
刚性粒子增韧尼龙1010体系的研究   总被引:3,自引:0,他引:3  
采用扫描电镜和动态力学等研究了在磺化聚苯乙烯(HSPS)作用下,尼龙1010(PA1010)/聚苯乙烯(PS)共混物的形态及相容性。结果表明,HSPS的加入显著改善了PS与PA1010的相容性,加强了界面粘结,使共混物缺口冲击明显提高,实现了PS增韧PA1010的目标。偏光显微竟结盟表明,HSPS的加入对共混物中PA1010的结晶形态有明显影响,使PA1010球晶细化且不完善。  相似文献   

17.
陆昶  张玉清 《高分子科学》2010,28(6):869-876
<正>An innovational method that poly(styrene-co-maleic anhydride)(SMA),a compatibilizer of immiscible nylon6/polystyrene(PA6/PS) blends,was first reacted with carbon black(CB) and then blended with PA6/PS,has been employed to prepare the PA6/PS/(SMA-CB) composites of which CB localized at the interface.In PA6/PS/CB blends,CB was found to preferentially localize in the PA6 phase.However,in the PA6/PS/(SMA-CB) blends,it was found that CB particles can be induced by SMA to localize at the interface.The electrical porperties of PA6/PS/(SMA-CB) composites were investigated.The results showed that the composites exhibited distinct triple percolation behavior,i.e.the percolation is governed by the percolation of CB in SMA phase,the continuity of SMA-CB at the interface and the continuity of PA6/PS interface.The percolation threshold of PA6/PS/(SMA-CB) was only 0.15 wt%,which is much lower than that of PA6/PS/CB.Moreover,the PTC(positive temperature coefficient) intensity of PA6/PS/(SMA-CB) composites was stronger than that of PA6/PS/CB and the negative temperature coefficient(NTC) effect was eliminated.The electrical properties of PA6/PS/(SMA-CB) were explained in terms of its special interface morphology:SMA and CB localize at interphase to form the conductive pathways.  相似文献   

18.
POE-g-PMAH反应性增容PA1010/PP共混物的性能研究   总被引:4,自引:2,他引:2  
乙烯-辛烯共聚物-g-聚马来酸酐(POE-g-PMAH)作为反应性增容剂,采用熔体共混的方法制备了PA1010/PP共混物,通过扫描电镜(SEM)、力学性能、傅立叶变换红外光谱(FTIR)和示差扫描量热(DSC)测试,研究了POE-g-PMAH对PA1010/PP共混物的增容作用.结果表明,POE-g-PMAH的加入可以减小共混物的相区尺寸,当PA1010/PP/POE-g-PMAH=70/30/15时,分散相尺寸小而均匀;FTIR结果表明接枝在POE上的马来酸酐基团和PA1010在熔融共混期间发生了化学反应;DSC研究结果表明共混体系中PA1010和PP的结晶温度和结晶度随POE-g-PMAH的加入而降低,表明POE-g-PMAH的增容作用对PA1010和PP的结晶有抑制作用.力学性能测试结果表明随着POE-g-PMAH的增加,共混物的冲击强度逐渐增加,当POE-g-PMAH含量增加到15%时,干态冲击强度达到21.13 kJ/m2,是不加增容剂的3.1倍,而拉伸和弯曲强度可以保持较高水平.POE-g-PMAH的增容机理在于其支链中的马来酸酐能与PA1010中的胺基(NH2—)发生化学反应,而主链POE与PP有较好的亲和性,从而降低界面张力,减少相区尺寸,大幅度提高力学性能.  相似文献   

19.
Thirty‐three polystyrene (PS)/acrylonitrile‐butadiene‐styrene (ABS) and high impact PS/ABS polymer blends with organoclay and copolymer additives were prepared by melt processing using different mixing sequences in order to test the putative capability of clay to perform a compatibilizing role in polymer blends. In general, the addition of clay increased the tensile modulus and had little effect on tensile strength. For the blends studied in this work, the addition of organoclays caused a catastrophic reduction in impact strength, a critical property for commercial viability. The polymer‐blend nanocomposites adopted a structure similar to that for ABS/clay nanocomposites as determined by X‐ray diffraction and transmission electron microscopy. It is suggested that clay reinforcement inhibits energy absorption by craze formation and shear yielding at high strain rates. Simultaneous mixing of the three components provided nanocomposites with superior elongation and energy to failure compared to sequential mixing. The clay pre‐treated with a benzyl‐containing surfactant gave the best overall properties among the various organoclays tested and of the two clay contents studied 4 wt % was preferred over 8 wt % addition. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

20.
A combination of NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF) techniques were suitable tools for examining the exchange reactions that occur during the melt‐mixing of nylon‐6 and poly(ethylene terephthalate) (Ny6/PET) blends in the presence of p‐toluene sulfonic acid (TsOH) at 285 °C. Some researchers believe that TsOH is an efficient catalyst for the amide–ester exchange reactions in PET/Ny6 and PET/nylon‐66 blends in the molten state. Instead, we have found that TsOH is able to react in the molten state with PET, yielding PET oligomers terminated with carboxyl groups. Because the latter oligomers can quickly react with Ny6 producing a Ny6/PET copolymer, the role of TsOH in the melt‐mixing process is not that of a catalyst but of a reactant. Our study allowed the structural identification of the Ny6/PET copolyesteramide produced in the exchange as a function of melt‐mixing time. The results revealed the essential role of carboxyl end groups in the exchange reaction between Ny6 and PET and allowed a detailed mechanism for this reaction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2778–2793, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号