首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: The scrape rubber is difficult to recycle, since it is not thermoplastic material. Consequently, it must be converted into a powder. The scrape rubber powder can be reused via different ways: a- Reclamation The reclamation process was studied. This process converts the rubber powder into elastic-plastic materials. The obtained reclaims were introduced into NR formulations. The obtained data reveal that, 10–30% reclaimed rubber can replace virgin NR without scarifying the basic properties of the rubber vulcanizates. In such way we can gain cost reduction. b- Reuse as filler-extender The rubber powder was treated with some oxidizing agents and namely HNO3 and H2O2 to modify its surface. The result of such treatment creates some functional groups such as carbonyl groups. The treated rubber powder was used as filler-extender in NR formulations. The treated rubber powder improves the tensile strength of the vulcanizates to some extent (62%). On the other hand, the treated powder was used in combinations with the classical reinforcing carbon black (HAF). The obtained results showed that, 20–40% of HAF can be replaced by the treated powder in NR mixes. The obtained vulcanizates have good physico-mechanical properties. In such way the production cost can be reduced. c- Utilization of sulfonated rubber powder as ion exchanger The rubber powder was sulfonated with Sulfuric and chlorosulfonic acids. The sulfonated product was evaluated as ion exchange resin to clear the industrial wastewater from heavy metals. The data showed that the Sodium salt form is more efficient ion exchanger than the acid form. d- Utilization in pavement The rubber powder is mixed with asphalt used in road pavement. The performance of asphalt concrete greatly depends on the particle size of the rubber powder used. The fine powder greatly improves the mechanical performance of the road pavement. The rubber powder was chemically modified. It was found that such modification had greatly improved the performance road pavement.  相似文献   

2.
姚競  戴明明 《应用化学》2023,40(1):52-58
通过力化学再生法制备了以废轮胎胶粉为原料的再生橡胶,研究了不同活化剂420用量对再生橡胶性能的影响,测试表明:再生橡胶含硫键断裂生成了硫自由基,随着活化剂含量的增加,再生橡胶的邵氏硬度和交联密度持续降低;拉伸强度、断裂延伸率和凝胶含量均先升高后降低,在活化剂用量为0.9 phr时,拉伸强度和断裂延伸率最大,再生橡胶的凝胶含量最大为19.7%。 微观形貌发现,废轮胎胎面胶粉的颗粒较为分散,再生橡胶的结构颗粒相互粘连,孔洞和缺陷较多,再生橡胶的门尼黏度随着活化剂含量的增加而降低。 综合来看,活化剂420的最佳含量为0.9 phr,再生橡胶各项性能最优。  相似文献   

3.
Mechanical and dynamic mechanical properties of natural rubber/recycled ethylene-propylene-diene rubber (NR/R-EPDM) blends were simultanoeusly enhanced by electron beam (EB) irradiation. The cross-linking promoter, trimethylolpropane triacrylate (TMPTA), was also introduced into the blends to induce the cross-linking. By applying EB irradiation, the tensile modulus, hardness, swelling, cross-link density, and storage modulus increased with increase in the irradiation dose; an irradiation dose of 50 kGy was efficient to gain optimum tensile strength. The formation of irradiation-induced cross-links after EB irradiation is a major concern for the enhancement of mechanical, swelling resistance, and dynamic mechanical properties of the blends.  相似文献   

4.
This research is conducted using palm kernel shell powder (PKS) as filler in natural rubber The effect of 3-aminopropyltrimethoxysilane as coupling agent on composites were studied at different palm kernel shell loading i.e, 0 5, 10, 15 and 20 phr The palm kernel shell was crushed and sieved to an average particle size of 5.53 μm The palm kernel shell filled natural rubber composites were prepared using laboratory size two roll mill The curing characteristics such as scorch time, cure time and maximum torque were obtained from rheometer The palm kernel shell powder filled natural rubber composites were cured at 150oC using hot press according to their cure time Curing characteristics, tensile properties, rubber-filler interaction and morphological properties of palm kernel shell powder filled natural rubber were studied Scorch time and cure time show reduction but tensile strength, elongation at break, modulus at 100% (M100) and modulus at 300% (M300) increased with the presence of 3-aminopropyltrimethyloxysilane Rubber-filler interaction studies showed that rubber filler interaction in natural rubber filled with palm kernel shell powder improved with incorporation of 3-aminopropyltrimethyoxysilane.  相似文献   

5.
Natural rubber based composites were prepared by incorporating Wood flour of two different particle size ranges (250–300 µm) and (300–425 µm) and concentrations (15 and 30 phr) into the matrix, using a Banbury® internal mixer according to a base formulation. Curing characteristics of the samples were studied. Influence of particle size and loading of filler on the properties of the composites was analyzed. Results obtained show that the addition of wood flour to natural rubber increased scorch time and curing time and caused improvement in modulus at 300% strain and in tear properties. However, it decreased tensile strength and elongation at break. The particle size range of 300–425 µm was found to offer the best overall balance of mechanical and dynamic properties (tan δ and viscous torque). Swelling behavior of the composites in toluene was also analyzed in order to determine the rubber volume fraction and crosslinking density. Composites with the bigger particle size wood flour were found to have greater crosslinking density than the ones with smaller particle size, fact that could possibly indicate a better rubber-filler interaction in the former. Major percentage of filler increased slightly this interaction. Water absorption behavior of the composites with wood flour reached a maximum of 12% w/w when 30 phr of filler were incorporated; nonetheless, particle size did not affect this property. The ageing study in presence of air at 70 °C revealed that natural rubber composites with wood flour maintained the same classification cell with temperature as the pure rubber. A compound with 30 phr of carbon black was prepared for comparative purposes. Results obtained were as expected. Scorch time decreased and higher values of modulus at 300% strain and tensile strength were achieved, due to strongest interaction between filler and elastomer.  相似文献   

6.
In the present work, γ irradiation is used for the in situ compatibilisation of blends of recycled high density polyethylene (rHDPE) and ground tyre rubber (GTR) powder. The expected compatibilisation mechanism involves the formation of free radicals, leading to chain scission within rubber particles, crosslinking of polyethylene matrix and co-crosslinking between the two blend components at the interface. While uncompatibilised rHDPE/GTR blends show poor mechanical properties, especially for elongation at break and Charpy impact strength, irradiation leads to a significant increase of these mechanical performances. Such behaviour is attributed to the development of an adhesion between GTR particles and the surrounding thermoplastic matrix. This conclusion is supported by in situ scanning electron microscopy observations during microtensile tests, showing strong elongation of GTR particles upon deformation of irradiated blends.  相似文献   

7.
In order to develop applications for the abundant waste rubber powder, chlorinated waste rubber (Cl-WR) was prepared by a water based chlorination method using chlorine as chlorinating agent. In this paper, Cl-WR was used as an elastic filler and blended with poly(vinyl chloride) (PVC) matrix to develop a new thermoplastic elastomer PVC/Cl-WR. The mechanical properties, hydrophilicity, swelling resistance, morphology and thermal properties of PVC/Cl-WR were characterized and compared with those of PVC/waste rubber powder (PVC/WR) blends. The results indicated that the mechanical properties, hydrophilicity, swelling resistance and thermal properties of the PVC/Cl-WR blends showed noticeable improvements over PVC/WR blends due to the improved polarity of Cl-WR. Also, the excellent miscibility and compatibility of Cl-WR with PVC was demonstrated by scanning electron microscope (SEM) images of the resulting blends.  相似文献   

8.
This article deals with blends based on natural rubber (NR) and recycled ethylene-propylene-diene rubber (R-EPDM). Natural rubber latex (NRL) was introduced into the blends to enhance interfacial adhesion between NR and R-EPDM. A new route of compounding was also suggested. The blends were prepared by mixing R-EPDM and other additives in NRL before blending with natural rubber on a two-roll mill. By applying this method, the homogeneity of the blends and cross-linking distribution are significantly improved. The blends exhibited superior state of cure, swelling resistance, mechanical properties and dynamic mechanical properties. The degree of entanglement between NR and R-EPDM also increased after NRL modification.  相似文献   

9.
范天博  陈思  姜宇  蔡勋  亢萍  李莉  张利  刘云义 《应用化学》2019,36(7):790-797
重钙粉作为填充剂被广泛应用于橡胶加工过程,但由于其表面具有极性,分散性较差,导致与橡胶材料界面结合较差,影响了橡胶产品的抗拉强度、断裂伸长率等力学性能。 本文采用沉淀法,在CaCl2-H2O-NH3-CO2体系中生成碳酸钙直接结晶于重钙粉颗粒表面,实现对重钙粉的表面包覆,将n(CaCl2):n(重钙粉)=1:100、5:100、10:100的包覆重钙粉填充到天然橡胶和再生胶中,橡胶的力学性能与填充未包覆重钙粉的橡胶相比有了一定的提升。 通过比较,在填充量较大(8.5%、15%)时,包覆重钙粉橡胶产品在硬度、定伸应力等力学性能上要好于轻钙粉橡胶产品;在填充量(5%、8.5%)时,包覆重钙粉橡胶产品的抗拉强度、断裂伸长率接近于白炭黑,硬度高于白炭黑橡胶产品。  相似文献   

10.
Key aspects of tire-rubber-waste collection, accumulation, processing, and further application have been examined. Special attention has been paid to application of ground tire rubber as a road-pavement modifier. The data on the structure and properties of tire-rubber powders obtained by different grinding techniques have been presented. It has been established that active tire-rubber powder (APDDR) fabricated by means of high-temperature shear grinding exhibits substantial advantages as compared to other rubber powders. In particular, applying these powders as modifiers has allowed to significantly improve properties of the paving bitumen and, as a result, the quality of asphalt concrete.  相似文献   

11.
Rubber magnetic composites were prepared through the incorporation of magnetic soft lithium ferrite into acrylonitrile butadiene rubber. Standard sulfur‐based curing and peroxide curing systems were used for cross‐linking of rubber matrices. The experimental part was focused on the investigation of ferrite content and curing system composition on cross‐link density, physical‐mechanical, magnetic and shielding characteristics of composites. The results demonstrated that cross‐link density and physical‐mechanical properties of composites can be modified by both the amount of ferrite and composition of the curing system. The influence of curing systems on magnetic properties was negligible. It can be stated that the application of lithium ferrite to rubber matrix leads to the preparation of rubber composites with the ability to efficiently absorb harmful electromagnetic radiation in the tested frequency range. The shielding efficiency of composites increased with increasing content of magnetic filler.  相似文献   

12.
Payne effect and its associated weak overshoot are of importance for understanding and regulating the softening of rubber nanocomposites under large amplitude oscillations.Herein,Payne effect in diverse filled vulcanizates is investigated for generalizing the common characteristics.Master curves of strain amplitude dependent storage modulus are created with respect to microscopic strain amplitude of the matrix,revealing a matrix-dominated elastic nonlinearity being independent of type and dispersity of filler,crosslinking density and sol fraction of matrix and filler-rubber interfacial interactions.However,carbonaceous fillers with higher affinity to the rubber matrices yield lower strain amplification and higher overshoot behavior in comparison with siliceous silica.The investigation would be illuminating for preparing rubber nanocomposites with optimized reinforcement and softening performances.  相似文献   

13.
The effect of bentonite clay loading on curing characteristics and tear strength of bentonite filled ethylene propylene diene monomer (EPDM) composite were studied. Compounding was carried out on two-roll mill and vulcanization was done at 1500C. Torque values, scorch time and optimum cure time of the prepared rubber compound were assessed by using Mosanto Disc Rheometer (MDR 2000). Results indicated that the maximum torque of EPDM/Bt composite decreases at high bentonite loading. Increasing in values with increasing bentonite loading was recorded for minimum torque and optimum cure time of EPDM/Bt composite. The increase is related with the increase in viscosity due to the increasing of bentonite clay loading in EPDM matrix. Scorch time was found to be decreasing up to 30 phr bentonite clay. Results also show that tear strength of EPDM/Bt composite increased with increasing bentonite loading up to 90 phr. The reason is probably due to agglomeration occur causes the reduction in properties at high loading above 90 phr bentonite clay. The scanning electron microscopy (SEM) of tear fracture surface of EPDM/Bt composite illustrated that with increasing bentonite loading up to 90 phr bentonite clay, a better dispersion of bentonite clay is achieved as compared to lower loading, resulting in high tear strength value for EPDM/Bt composite.  相似文献   

14.
以交联密度不同的同类轮胎胎面胶A1和A2为研究对象,通过动态拉伸实验得到储能模量及损耗模量随频率变化的曲线.建立了黏弹性广义Maxwell模型来定量分析不同温度的橡胶在不同频率的动态载荷下的能量损耗.采用非线性规划的方法分别在低频(10~25 Hz)及高频(25~60 Hz)下拟合模量-频率曲线,得到黏弹性广义Maxwell模型的参数值.采用有限元软件Abaqus模拟胎面胶动态拉伸过程并计算胎面胶的损耗角正切,得到不同温度下胎面胶的损耗角正切随激振频率的变化规律,通过和实验结果的比较证明文中所述黏弹性广义Maxwell模型及其参数获取方法可准确应用于胎面胶的动态拉伸性能分析.预测了在不同温度及频率下每一循环载荷周期中胎面胶的应力-应变迟滞回线以及单位体积胶料的能量损耗,阐释了不同温度下的胎面胶的能量损耗随频率的变化规律,同时结合2种胎面胶的交联密度测试数据分析了胶料的构效关系.  相似文献   

15.
The effect of transition metals as a promoter of physico-mechanical properties of radiation-vulcanized natural rubber latex (RVNRL) films was investigated. RVNRL films were prepared by the addition of transition metals (Fe, Mn, etc.) of different concentrations (0–30 ppm) in natural rubber (NR) latex and irradiated with various radiation doses (0–20 kGy). The concentrations of metal ions and radiation doses were optimized and found to be 20 ppm and 12 kGy, respectively. Tensile strength, tear strength, and cross-linking density of the irradiated rubber films were increased with increasing concentration of metal ions as well as radiation doses. The mechanical properties of the films were enhanced by approximately 20% at the optimum conditions. In contrast, elongation at break, permanent set, and swelling ratio of the films were decreased under the same conditions. The comparative effect of metal ions can be explained by Fajan's rules, reported in this article.  相似文献   

16.
The effect of swelling in kerosene on the electrical conductance of 60, 80, and 100 part per hundred parts of rubber by weight of Fast Extrusion Furnace (FEF) carbon black-loaded styrene-butadiene rubber (SBR, 1502) was studied. It was found that there is a characteristic time of swelling after which a sudden decrease in conductivity appears. An ideal and simple model is suggested to calculate the carbon-carbon interspacing distance, D, in the carbon/rubber matrix. The dependence of D on the swelling time is also discussed.  相似文献   

17.
Emulsions containing 3% polyethylene were stabilized against coalescence in an asphalt medium by low molecular weight virgin polybutadiene and recycled styrene-butadiene stabilizers. The recycled styrene-butadiene steric stabilizer precursor was obtained as a thermo-mechanical devulcanized ground rubber tire in asphalt. The low molecular weight butadiene and styrenebutadiene rubbers were in situ reacted with sulfur in order to increase the compatibility of the stabilizer with the asphalt phase.Because of the high molar volume of the asphalt phase and the similarity in contact energy between stabilizer and matrix phase, it is assumed that the stabilization is caused by entropic effects only. The fundamental aspects of elastic stabilization of polyethylene-asphalt emulsions are discussed. The total interaction free energy profile between the polyethylene particles shows that the efficiency of the steric stabilizer formation reaction can be improved significantly.The use of devulcanized rubber tire as a replacement for the virgin polybutadiene precursor in the in situ stabilization process can significantly reduce the cost of the technology.  相似文献   

18.
This study focused on the microbial desulfurization of ground tire rubber (GTR) by Thiobacillus ferrooxidans, which selected from the soil of an iron mine had strong sulphur oxidizing capacity. GTR was desulfurizated in the modified Silverman medium during the cultivation of T. ferrooxidans for 30 days, and T. ferrooxidans was able to maintain a high biomass. The continuous increase of SO42− in the medium indicated that the sulfur on the surface of GTR was oxidized. FTIR-ATR and XPS spectra revealed that a rupture of conjugated CC bonds and a reduction of sulfur content on the surface of GTR had occurred during desulfurization. The sol fraction of GTR increased from its original 4.69%-7.43%. Compared with GTR sheet, desulfurizated GTR (DGTR) sheets had much smoother surfaces, better physical properties, and higher swelling values. NR vulcanizates filled with DGTR (with 10-40 phr loading) had lower crosslink density and better mechanical properties than those filled with GTR at the same loading. The results determined by DMA suggested that NR vulcanizates filled with DGTR had a reduction of molecular chain friction resistance during glass transition and SEM photograph indicated a better interface coherence between DGTR and NR matrix.  相似文献   

19.
曹建 《广州化学》2014,(2):53-56
以重量比为90∶10的氯化丁基橡胶/环氧天然橡胶共混胶为基体,用密炼法将三种不同结构的氧化锌(普通条状氧化锌、片状氧化锌和纳米结构氧化锌)分散到基体中,研究不同结构的氧化锌对共混胶力学性能和气体阻隔性能的影响.结果表明片状氧化锌和纳米氧化锌复合胶比普通氧化锌复合胶强度下降,伸长率提高.片层氧化锌复合体系硫磺用量提高到2.0份,综合力学性能达到最好,且片状氧化锌能够赋予复合胶最佳的气体阻隔性能,比普通氧化锌体系提高了50%.  相似文献   

20.
Waste tire powder subjected to allylamine modification in the presence of ultraviolet (UV) radiation has been used to prepare polypropylene based thermoplastic vulcanizates with maleic anhydride polypropylene (MA‐PP) as compatibilizer. The effect of increasing the concentration of MA‐PP on performance characteristics like tensile strength, elongation and rheological properties have been investigated. X‐ray diffraction studies of the PP/waste tire powder blend indicate the disappearance of β crystalline peaks on addition of waste tire powder in the PP, whereas it is observed in the allylamine modified rubber powder loaded PP. Differential scanning calorimetry results further supported the above fact. The improvement in mechanical properties of the PP/allylamine modified rubber powder loaded thermoplastic vulcanizates has been explained in terms of βα transformation of PP crystals during straining of the samples and uniform dispersion of allylamine coated rubber powder in the PP matrix. The melt rheological properties of the thermoplastic vulcanizates loaded with modified rubber powder are higher than its counterpart due to the higher dispersion as a result of chemical interaction between the rubber powder surface with the MA‐PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号