首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Summary: The lack of accurate knowledge for measuring monomer droplet size and droplet size distribution has hampered the further progress of miniemulsion polymerization. Monomer droplet size is probably the most important characteristics of a miniemulsion, influencing the miniemulsion stability and the nucleation mechanism. To date, several experimental techniques have been tested to measure miniemulsion droplet size, but none are convenient and accurate. This work presents a novel experimental technique, using a powerful new scanning transmission electron microscopy (STEM) imaging system, which allows transmission observations of wet samples in an environmental scanning electron microscopy (ESEM). This new imaging technique is a useful technique to directly measure droplet size and droplet size distribution.

Miniemulsion droplets in dark field wet STEM imaging conditions.  相似文献   


2.
3.
Polymer particle growth in catalytic ethylene slurry polymerizations with SiO2‐supported metallocene and post‐metallocene catalysts was monitored online using a Lasentec FBRM probe inserted into the stirred reactor. FBRM enabled the online monitoring of particle numbers and size distributions. Trend analyses provided time‐resolved information on selected variables of the particle growth processes. FBRM was combined with simultaneous ethylene mass flow measurements in order to distinguish between ideal particle growth and more complex growth processes involving particle fragmentation and aggregation. Additional use of a Lasentec PVM video microscopy probe during ethylene polymerization on a MgCl2‐supported Ziegler catalyst enabled the online visualization of PE particles, complementing the data generated by FBRM online monitoring.

  相似文献   


4.
The role of grafting in particle nucleation during the emulsion polymerization of vinyl acetate with partially hydrolyzed poly(vinyl alcohol) (PVA) as an emulsifier and potassium persulfate as an initiator was investigated. The polymerizations were carried out in batch with a low solids (10%) recipe. An automated reaction calorimeter (Mettler RC1) was used for the direct monitoring of the kinetics of emulsion polymerizations with three medium molecular weight PVAs differing in their degrees of blockiness (Poval 217EE > 217E > 217). Smith–Ewart case 1 kinetics (average number of free radicals per particle < 0.5) were followed in all cases, and no constant rate in interval II was observed. Contrary to what was expected, a nonlinear relationship was observed between the rate of polymerization (Rp) and the number of particles (Np). At Rp max, Np (217E) > Np (217EE) > Np (217), and the final Np was independent of the degree of blockiness of PVA. The particle size distributions were broad (particle diameter = 20–100 nm) and bimodal. On the basis of these data, we concluded that particle nucleation was continuous and was accompanied by extensive limited aggregation during the particle growth stages. The evolution of the amounts of grafted PVA and poly(vinyl acetate) (PVAc) were determined in polymerizations employing the two PVAs differing the most in blockiness (Poval 217EE and 217). The grafted PVAc followed similar profiles, increasing with conversion, particularly near the end of the two reactions. The amounts of grafted PVAc were about the same in the final latexes (37–39%). In contrast, the grafting of PVA was nearly complete by the time monomer droplets had disappeared in each reaction (25% conversion). However, the extent of grafting differed significantly, with the blockier PVA having about one‐third the grafting of the more random PVA (~10% vs ~30%). In these low solids recipes, grafting appeared to be primarily a solution event, occurring predominantly in the aqueous phase and not at the particle/water interface, as was previously speculated. The PVAc grafts grew until the molecules became water‐insoluble and precipitated, forming polymer particles. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3633–3654, 2001  相似文献   

5.
Several water‐soluble polymers were used as templates for the in situ polymerization of pyrrole to determine their effect on the generation of nanosized polypyrrole (PPy) particles. The polymers used include: polyvinyl alcohol (PVA), polyethylene oxide (PEO), poly(vinyl butyral), polystyrene sulfonic acid, poly(ethylene‐alt‐maleic anhydride) (PEMA), poly(octadecene‐alt‐maleic anhydride), poly(N‐vinyl pyrrolidone), poly(vinyl butyral‐co‐vinyl alcohol‐co‐vinyl acetate), poly(N‐isopropyl acrylamide), poly(ethylene oxide‐block‐propylene oxide), hydroxypropyl methyl cellulose, and guar gum. The oxidative polymerization of pyrrole was carried out with FeCl3 as an oxidant. The morphology of PPy particles obtained after drying the resulting aqueous dispersions was examined by optical microscopy, and selected samples were further analyzed via atomic force microscopy. Among the template polymers, PVA was the most efficient in generating stable dispersions of PPy nanospheres in water, followed by PEO and PEMA. The average size of PPy nanospheres was in the range of 160 nm and found to depend on the molecular weight and concentration of PVA. Model reactions and kinetics of the polymerization reaction of pyrrole in PVA were carried out by hydrogen 1H NMR spectroscopy using ammonium persulfate as an oxidant. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Perovskite-type membranes of (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ (BSCF) and (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3−δ (BSFZ) were successfully prepared via liquid-phase sintering using BN as sintering aid. The obtained membranes were examined via powder X-ray diffraction pattern (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and oxygen permeation experiments. It has emerged that the use of BN as sintering aid lowers sintering temperatures in order to obtain dense membranes with relative densities in the range of 93–96% as proven by the Archimedes method. It was further shown that the perovskite structure could be maintained after sintering with BN. Additionally, BN was completely removed from the sintered membranes. Investigation of the microstructure revealed that the average grain size of the membranes was influenced by the amount of BN added prior the sintering process. It was found that large amounts of BN effectively lower the average grain size. Oxygen permeation experiments have shown that the lower the average grain size the lower the oxygen permeation performance, particularly in the case of BSCF. Transmission electron microscopy revealed that no evidence for an amorphous layer or any other interfacial phase in the grain boundary is present.  相似文献   

7.
气相色谱/化学电离-质谱法检测石油中的环烷酸   总被引:8,自引:0,他引:8  
采用柱色谱和阴离子交换树脂法分离出原油200~420 ℃馏分中的羧酸,通过红外光谱仪检验分离效果及分离出的羧酸的类型。采用气相色谱及以异丁烷为反应气的化学电离(CI)质谱法分析分离出的羧酸。在对其结构进行推断和归类中,以纯脂肪酸、环烷酸以及分离出的石油酸的CI质谱数据为基础,结合环烷酸z系列通式CnH2n+zO2,分别得到了不同碳数的脂肪酸及一环、二环……六环环烷酸的分析结果。结果表明,含酸原油中的羧酸主要是环烷酸,相对分子质量分布为170~510,碳数分布为C10~C35,其中双环、三环环烷酸含量较高。  相似文献   

8.
The recent development of new brands of packing materials made of fine porous-shell particles, e.g., Halo and Kinetex, has brought great improvements in potential column efficiency, demanding considerable progress in the design of chromatographic instruments. Columns packed with Halo and Kinetex particles provide minimum values of their reduced plate heights of nearly 1.5 and 1.2, respectively. These packing materials have physical properties that set them apart from conventional porous particles. The kinetic performance of 4.6 mm I.D. columns packed with these two new materials is analyzed based on the results of a series of nine independent and complementary experiments: low-temperature nitrogen adsorption (LTNA), scanning electron microscopy (SEM), inverse size-exclusion chromatography (ISEC), Coulter counter particle size distributions, pycnometry, height equivalent to a theoretical plate (HETP), peak parking method (PP), total pore blocking method (TPB), and local electrochemical detection across the column exit section (LED). The results of this work establish links between the physical properties of these superficially porous particles and the excellent kinetic performance of columns packed with them. It clarifies the fundamental origin of the difference in the chromatographic performances of the Halo and the Kinetex columns.  相似文献   

9.
Adsorption technology is widely considered as the most promising and robust method of purifying water at low cost and with high-efficiency. Carbon-based materials have been extensively explored for adsorption applications because of their good chemical stability, structural diversity, low density, and suitability for large scale production. Graphene – a single atomic layer of graphite – is the newest member in the family of carbon allotropes and has emerged as the “celeb” material of the 21st century. Since its discovery in 2004 by Novoselov, Geim and co-workers, graphene has attracted increased attention in a wide range of applications due to its unprecedented electrical, mechanical, thermal, optical and transport properties. Graphene's infinitely high surface-to-volume ratio has resulted in a large number of investigations to study its application as a potential adsorbent for water purification. More recently, other graphene related materials such as graphene oxide, reduced graphene oxide, and few-layered graphene oxide sheets, as well as nanocomposites of graphene materials have also emerged as a promising group of adsorbent for the removal of various environmental pollutants from waste effluents. In this review article, we present a synthesis of the current knowledge available on this broad and versatile family of graphene nanomaterials for removal of dyes, potentially toxic elements, phenolic compounds and other organic chemicals from aquatic systems. The challenges involved in the development of these novel nanoadsorbents for decontamination of wastewaters have also been examined to help identify future directions for this emerging field to continue to grow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号