首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
通过对国内两座中型高炉冶炼过程的[S i]时间序列的混沌分析,计算出相应的Lyapunov指数谱.由最大Lyapunov指数为正,定量的说明了两座高炉冶炼过程具有混沌性,并估计了两座高炉冶炼过程[S i]可预测的时间尺度.同时根据最大Lyapunov指数,建立了高炉冶炼过程[S i]预报模型,取得了较好的结果.  相似文献   

2.
Summary We develop methods for determining local Lyapunov exponents from observations of a scalar data set. Using average mutual information and the method of false neighbors, we reconstruct a multivariate time series, and then use local polynomial neighborhood-to-neighborhood maps to determine the phase space partial derivatives required to compute Lyapunov exponents. In several examples we demonstrate that the methods allow one to accurately reproduce results determined when the dynamics is known beforehand. We present a new recursive QR decomposition method for finding the eigenvalues of products of matrices when that product is severely ill conditioned, and we give an argument to show that local Lyapunov exponents are ambiguous up to order 1/L in the number of steps due to the choice of coordinate system. Local Lyapunov exponents are the critical element in determining the practical predictability of a chaotic system, so the results here will be of some general use.  相似文献   

3.
A gradient based approach for the design of set-point tracking adaptive controllers for nonlinear chaotic systems is presented. In this approach, Lyapunov exponents are used to select the controller gain. In the case of unknown or time varying chaotic plants, the Lyapunov exponents may vary during the plant operation. In this paper, an effective adaptive strategy is used for online identification of Lyapunov exponents and adaptive control of nonlinear chaotic plants. Also, a nonlinear observer for estimation of the states is proposed. Simulation results are provided to show the effectiveness of the proposed methodology.  相似文献   

4.
A new numerical differential filter is built to estimate the numerical differential for a chaotic time series and then a differential phase space for the chaotic time series is reconstructed. Correlation dimensions, Lyapunov exponents and forecasting are discussed for the chaotic time series on the reconstructed differential phase space and on the delay phase space, respectively. Comparison results show that the numerical results on the differential phase space are better than that on the delay phase space.  相似文献   

5.
Lyapunov exponents of a dynamical system are a useful tool to gauge the stability and complexity of the system. This paper offers a definition of Lyapunov exponents for a sequence of free linear operators. The definition is based on the concept of the extended Fuglede-Kadison determinant. We establish the existence of Lyapunov exponents, derive formulas for their calculation, and show that Lyapunov exponents of free variables are additive with respect to operator product. We illustrate these results using an example of free operators whose singular values are distributed by the Marchenko-Pastur law, and relate this example to C.M. Newman's “triangle” law for the distribution of Lyapunov exponents of large random matrices with independent Gaussian entries. As an interesting by-product of our results, we derive a relation between the extended Fuglede-Kadison determinant and Voiculescu's S-transform.  相似文献   

6.
Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic analysis is capable of quantitatively describing the aperiodic vocal fold vibrations and may be helpful for understanding disordered behaviors in pathological laryngeal systems.  相似文献   

7.
Dimensions and Lyapunov exponents from exchange rate series   总被引:2,自引:0,他引:2  
Detecting the presence of deterministic chaos in economic time series is an important problem that may be solved by measuring the largest Lyapunov exponent. In this paper we present estimates of the largest Lyapunov exponent in daily data for the Swedish Krona vs Deutsche Mark, ECU, U.S. Dollar and Yen exchange rates. In order to estimate the dimension of the systems producing these exchange rate series, we also present estimates of the correlation dimension. We found indications of deterministic chaos in all exchange rate series. However, the estimates for the largest Lyapunov exponents are not reliable, except in the Swedish Krona-ECU case, because of the limited number of data points. In the Swedish Krona-ECU case, we found indications of a low-order chaotic dynamical system.  相似文献   

8.
In this paper, we investigate the influence of small perturbations of the coefficients of discrete time-varying linear systems on the Lyapunov exponents. For that purpose we introduce the concepts of central exponents of the system and we show that these exponents describe the possible changes in the Lyapunov exponents under small perturbations. Finally, we present several formulas for the central exponents in terms of the transition matrix of the system and the so-called upper sequences. The results are illustrated by numerical examples.  相似文献   

9.
In this paper we introduce the concepts of exponential exponents of discrete linear time varying systems. It is shown that these exponents describe the possible changes in the Lyapunov exponents under perturbation decreasing at infinity at exponential rate. Finally we present formulas for the exponential exponents in terms of the transition matrix of the system.  相似文献   

10.
Stochastic virus dynamics modeled by a system of stochastic differential equations with Beddington-DeAngelis functional response and driven by white noise is investigated. The global existence of positive solutions and the existence of stationary distribution are proved. Upper and lower bounds of the pathwise and asymptotic moments for the positive solutions are sharply estimated. The absorbing property in time average is shown and the moment Lyapunov exponents are proved to be nonpositive.  相似文献   

11.
In this paper, a novel four-dimensional autonomous system in which each equation contains a quadratic cross-product term is constructed. It exhibits extremely rich dynamical behaviors, including 3-tori (triple tori), 2-tori (quasi-periodic), limit cycles (periodic), chaotic and hyperchaotic attractors. In particular, we observe 3-torus phenomena, which have been rarely reported in four-dimensional autonomous systems in previous work. With the parameter r varying in quite a wide range, the evolution process of the system begins from 3-tori, and after going through a series of periodic, quasi-periodic and chaotic attractors in so many different shapes coming into being alternately, it evolves into hyperchaos, finally it degenerates to periodic attractor. Moreover, when the system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of the hyperchaotic systems already reported, especially the largest Lyapunov exponents. We also observe a chaotic attractor of a very special shape. The complex dynamical behaviors of the system are further investigated by means of Lyapunov exponents spectrum, bifurcation diagram and phase portraits.  相似文献   

12.
Based on Lyapunov-exponent generation and the Gram-Schimdt orthogonalization, analysis and design of some anti-controlled higher-dimensional hyperchaotic systems are investigated in this paper. First, some theoretical results for Lyapunov-exponent generating algorithms are proposed. Then, the relationship between the number of Lyapunov exponents and the number of positive real parts of the eigenvalues of the Jacobi matrix is qualitatively described and analyzed. By configuring as many as possible positive real parts of the Jacobian eigenvalues, a simple anti-controller of the form $b\sin (\sigma x)$ for higher-dimensional linear systems is designed, so that the controlled systems can be hyperchaotic with multiple positive Lyapunov exponents. Utilizing the above property, one can resolve the positive Lyapunov exponents allocation problem by purposefully designing the number of positive real parts of the corresponding eigenvalues. Two examples of such anti-controlled higher-dimensional hyperchaotic systems are given for demonstration.  相似文献   

13.
This note studies properties of Perron or lower Lyapunov exponents for discrete time varying system. It is shown that for diagonal system of order s there are at most 2s-1 lower Lyapunov exponents. By example it is demonstrated that in non-diagonal case it is possible to have arbitrarily many different Perron exponents. Finally it is shown that the exponent is almost everywhere equal to the lower Lyapunov exponent of the matrices coefficient sequence.  相似文献   

14.
In this paper, we propose a novel methodology for automatically finding new chaotic attractors through a computational intelligence technique known as multi-gene genetic programming (MGGP). We apply this technique to the case of the Lorenz attractor and evolve several new chaotic attractors based on the basic Lorenz template. The MGGP algorithm automatically finds new nonlinear expressions for the different state variables starting from the original Lorenz system. The Lyapunov exponents of each of the attractors are calculated numerically based on the time series of the state variables using time delay embedding techniques. The MGGP algorithm tries to search the functional space of the attractors by aiming to maximise the largest Lyapunov exponent (LLE) of the evolved attractors. To demonstrate the potential of the proposed methodology, we report over one hundred new chaotic attractor structures along with their parameters, which are evolved from just the Lorenz system alone.  相似文献   

15.
To identify random signals from nonlinear system under stochastic background is very difficult, and standard dynamical methods are generally not applicable. The pseudo-periodic surrogate algorithm recently developed by Small is introduced to test the sample time series in the Duffing oscillator under the Gaussian white noise excitation. The correlation dimensions of the noisy periodic, noise-induced chaotic and random-dominant responses of the system are compared with their corresponding artificial data respectively. Meanwhile, the leading Lyapunov exponents by Rosenstein’s algorithm are also presented to validate the identification idea on the system’s sample time series.  相似文献   

16.
We study in this paper the billiards on surfaces with mix-valued Gaussian curvature and the condition which gives nonvanishing Lyapunov exponents of the system. We introduce a criterion upon which a small perturbation of the surface will also produce a system with positive Lyapunov exponents. Some examples of such surfaces are given in this article.  相似文献   

17.
The purpose of the paper is to extend the principal eigenvalue and principal eigenfunction theory for time independent and periodic parabolic equations to random and general nonautonomous ones. In the random case, a notion of principal Lyapunov exponent serving as an analog of principal eigenvalue is introduced. It is shown that the principal Lyapunov exponent is deterministic and of simple multiplicity. It is also shown that there is a one-dimensional invariant random subbundle corresponding to the solutions that are globally defined and of the same sign, which serves as an analog of principal eigenfunction. In addition, monotonicity of the principal Lyapunov exponent with respect to the zero-order terms both in the equation and in the boundary condition is proved. When the second- and first-order terms are deterministic, it is proved that the principal Lyapunov exponent is greater than or equal to the principal eigenvalue of the associated time-averaged equation. In the general nonautonomous case, the concepts of principal spectrum, which serves as an analog of principal eigenvalue, and principal Lyapunov exponents are introduced. As is known, the principal spectrum is a compact interval. It is proved in the paper that the principal spectrum contains all the principal Lyapunov exponents. When the second and first-order terms are time independent, a lower estimate of the infimum of the principal spectrum is given in terms of an associated time-averaged equation.  相似文献   

18.
We investigate the properties of a marine dynamical system by means of time series of the sea-level height at four locations in the Saronicos Gulf in the Aegean Sea, Greece. In order to characterize the dynamics, we estimate the dimension of the underlying system attractor, and we compute its Lyapunov exponents. Dimension estimates indicate that the dynamics can be explained by a low-dimensional deterministic dynamical system. Lyapunov exponent estimates further substantiate the above conclusion, while at the same time, indicate that the dynamical system is a rather nonuniform chaotic one.  相似文献   

19.
Third part of the paper is devoted to analysis of the hyper, hyper-hyper and spatial–temporal chaos of continuous mechanical systems using the Lyapunov exponents. The constructed algorithms for the Lyapunov exponents’ computation allowed detecting and analysing novel phase transitions from chaos through hyper chaos to hyper-hyper chaos. In addition, a novel characteristic “maximal deflection versus excitation amplitude” has been introduced to study stability properties of the investigated continuous systems. It should be emphasized that the latter characteristic yields results in full agreements with those obtained via the Lyapunov exponents’ spectrum estimation. The introduced methods and tools of analysis allowed detecting the Sharkovskii windows of periodicity in all continuous mechanical systems investigated in this paper. Finally, the approach to study the space-temporal chaos exhibited by shell structural-members is also proposed.  相似文献   

20.
In this paper, nonlinear time series modeling techniques are applied to analyze building energy consumption data. The time series were obtained for the benchmark data set Proben 1, and comes from the first energy prediction contest, the Great Building Energy Predictor Shootout I, organized by ASHRAE. The phase space, which describes the evolution of the behavior of a nonlinear system, is reconstructed using the delay embedding theorem suggested by TAKENS. The embedding parameters, e.g. the delay time and the embedding dimension are estimated using the average mutual information (AMI) of the data and the false nearest neighbor (FNN) algorithm, respectively. Nonlinearity was detected, by applying the surrogate data sets method.Numerically estimated non-integral fractal dimension and a positive Lyapunov exponent are not necessarily sufficient indication of chaos; therefore we apply a more stringent criterion, developed by Gao and Zheng, which is based on the logarithmic displacement of time-dependent exponent curves, and show that these data are chaotic.Based on this analysis and proof, we then calculate the correlation dimension of the resulting attractor and the largest Lyapunov exponent. The correlation dimension 3.47 and largest Lyapunov exponent 0.047 are estimated. These results indicate that chaotic characteristics obviously exist in the specific energy consumption data set, and thus techniques based on phase space dynamics can be used to analyze and predict buildings energy use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号