首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solution reversible addition fragmentation chain transfer (RAFT) polymerization of butyl acrylate in 50 wt% toluene, initiated with 2,2′‐azobisisobutyronitrile and mediated with 3‐benzyltrithiocarbonyl propionic acid, is carried out in a tube reactor of 1.65 mm inner diameter. The tube reactor is operated in three modes: batch tube reactor (inlet and outlet closed, recycle open), continuous tube reactor (inlet and outlet open, recycle closed), and loop tube reactor (inlet, outlet, and recycle all open). The effects of inlet and outlet flow rates, residence time, and recycle ratio on the polymerization rate and polymer molecular weight distribution (MWD) are systematically investigated. The dynamic and steady state kinetics of the three modes of operation are analyzed and compared. Polymer samples having multimodal MWD are generated using the loop reactor. It is found that the MWD and multimodality can be readily controlled by residence time (τ) and recycle ratio.  相似文献   

2.
The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio.  相似文献   

3.
The dynamics of the activity and polymer growth in Ziegler-Natta catalysts has been well established in the literature. 1 , 2 The corresponding dynamic behaviour of the reactor system is predicted using a segregation model approach and the unsteady state model of residence time distribution previously developed. 3 The model is therefore able to predict reactor performance for a time-varying catalyst flow rate through the reactor, as well as time-varying concentrations of monomer, co-catalyst and chain termination agent. A method of determining grade transition policies by the use of the developed reactor models is then presented. It is demonstrated that the reactor productivity, catalyst efficiency, average chain length and polydispersity can be controlled by the catalyst flow rate and reactor monomer and hydrogen concentrations. The relationship between the required polymer product properties and the system flow rates is determined. Case studies are presented that evaluate various transition strategies for a specific polymer grades.  相似文献   

4.
The enhancement of ethylbenzene conversion by further displacement of the thermodynamic equilibrium via the influence of the dual-functionality of a well-mixed catalyst pattern has been investigated. A rigorous steady state mathematical model based on the dusty gas model is implemented for the simulation. The simulation results reveal that the introduction of the concept of the reaction coupling has significant effect on the displacement of the thermodynamic equilibrium and considerable enhancement of simultaneous production of styrene and cyclohexane. Almost 100% conversion of the ethylbenzene and benzene is achieved through the application of this approach. It is also found that considerable decrease in the reactor length is achieved by employing a reactor catalyst bed with different bed compositions. Effective operating regions with optimal conditions are observed. An effective reactor length criterion is used to evaluate the performance of the reactor under these optimal conditions. The effective reactor length is found to be sensitive and favored by high feed temperature and pressure. The sensitivity analysis shows that the key parameters of feed temperature, pressure, and the bed composition play an important role on the reactor performance. The results also show that almost 100% conversion of ethylbenzene and benzene at low temperature and shorter reactor length can be achieved by maintaining the reactor beds at different temperatures. This temperature switching policy may result in appreciable energy saving. Moreover, operating the reactor at low temperature protect the catalyst from the excessive temperatures which have destructive effects on the catalysts and the mechanical stability of the reactors. Also, the low temperature operation has significant contribution to the reduction of the operating cost.  相似文献   

5.
6.
One of the most important reasons for modeling polymerization processes is to provide a tool for estimating the risks of runaway reactions in polymer industry. This is especially important for batch processes, such as anionic polymerization of isoprene or butadiene. This work presents a theoretical and experimental research of the anionic polymerization of isoprene using cyclohexane as solvent and n‐butyllithium as initiator. In the first part, a phenomenological kinetic expression is obtained that describes the anionic polymerization of isoprene initiated by n‐butyllithium in cyclohexane. In the second, the mass and energy balance equations are solved to model the anionic polymerization of isoprene in a quasi‐adiabatic batch reactor. Adjustment of reactor parameters is made using the data obtained from a laboratory reactor. The proposed model predicts adequately the obtained temperature, pressure, and conversion profiles from this set of experiments. Finally, a mathematical model is developed to predict the behavior for the anionic polymerization of isoprene in an industrial reactor.  相似文献   

7.
In this paper,the effect of water vapor removal on methanol synthesis capacity from syngas in a fixed-bed membrane reactor is studied considering long-term catalyst deactivation.A dynamic heterogeneous one-dimensional mathematical model that is composed of two sides is developed to predict the performance of this configuration.In this configuration,conventional methanol reactor is supported by an aluminasilica composite membrane layer for water vapor removal from reaction zone.To verify the accuracy of the considered model and assumptions,simulation results of the conventional methanol reactor is compared with the industrial plant data under the same process condition.The membrane reactor improves catalyst life time and enhances CO2 conversion to methanol by overcoming the limitation imposed by thermodynamic equilibrium.This configuration has enhanced the methanol production capacity about 4.06% compared with the industrial methanol reactor during the production time.  相似文献   

8.
A setup to characterize polymerization kinetics of polymer‐based proppants produced in an industrial batch reactor by suspension polymerization is presented. A microscale reactor is designed to mimic temperature and pressure conditions of the industrial counterpart. Raman spectroscopy is used to follow the consumption of vinyl bonds of the styrene monomer and the crosslinker via disappearance of the peak at 1632 cm‐1. Raman data from the microscale reactor are remotely obtained via a fiber optics system. Reaction progress by any generic formulation can be safely followed up to conversions of 90%, well beyond the gel point. Reaction rates are used to define feasible temperature–time profiles for the industrial reactor. In parallel, bulk and suspension polymerizations are carried out under those temperature–time profiles in a 3 L laboratory reactor to produce proppants formulations with the geometry required to perform product characterization, mainly focused on the thermal and mechanical response of the polymer particles. Overall, the whole setup allows optimization of proppant formulations and the cost of their processes of production.  相似文献   

9.
This study investigates atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) using activators generated by electron transfer (AGET) as the initiation technique in an emulsion well‐mixed 2L stirred tank reactor. The performance of the AGET ATRP of MMA is analyzed for five key independent variables, namely temperature, catalyst complex (CuBr2/dNbpy), initiator (EBiB), reducing agent (ascorbic acid), and surfactant (Brij 98). The reaction is carried out based on a two‐step polymerization procedure. A resolution 5 fractional factorial design technique is employed to assess the influence of the five independent variables on the monomer conversion, polymer average molecular weights, and polydispersity index (PDI). An input–output model is constructed from the data of 21 designed experimental tests. A statistical analysis of the results shows that the temperature is the most influential variable for the three output process responses. The initiator strongly affects the poly(methyl methacrylate) (PMMA) molecular weights. It is the least important key variable affecting MMA conversion and PDI, and the surfactant is the least one affecting PMMA Mn. On assessing the independent interactions effect, the interactions of temperature‐surfactant on conversion, and temperature‐initiator for PMMA Mn are considered. Process simulation in 3D mapping has demonstrated that model predictions agree well with experimental data.  相似文献   

10.
In this work, we determine the optimal control for free-radical methyl methacrylate polymerization using a bifunctional initiator in a non-isothermal batch reactor. A detailed unsteady-state model of the process is employed. Four different optimal control objectives are realized, each of which optimizes a given variable simultaneously with the specification of another. The first two objectives involve the maximization of monomer conversion in a specified operation time, and the minimization of operation time for a specified, final monomer conversion. The last two objectives involve the maximization of monomer conversion for specified, final number and weight average polymer molecular weights. The temperature of heat-exchange fluid inside reactor jacket is considered as a control function of an independent variable. To meet the specification of an optimization variable other than time, the differential model of batch process is derived in the range of specified variable. Equations are provided for Jacobian evaluations to help in the accurate solution of process model. A genetic algorithms-based optimal control method is applied to realize the four optimal control objectives. The results show that optimal control can significantly enhance the performance of the batch polymerization process.  相似文献   

11.
The global dynamics of a deterministic model in wastewater treatment has been investigated in Zhang (J Math Chem 50:2239–2247, 2012). The stochastic version, which can be used for continuous flow bioreactor and membrane reactor is presented in this study. Precisely, we assume there is some uncertainty in the part describing the recycle, which results in a set of stochastic differential equations with white noise. We first show that the stochastic model has always a unique positive solution. Then long time behavior of the model is studied. Our study shows that both the washout equilibrium and non-washout equilibrium are stochastically stable. At the end, we carry out some numerical simulations, which support our theoretical conclusions well.  相似文献   

12.
An enzyme reactor electrode system for the determination of urea is described. A buffer is pumped through an enzyme reactor (0.4 ml) containing urease immobilized with glutaraldehyde to glass. The effluent is mixed with sodium hydroxide pumped through a second channel and fed through an ammonia gas electrode. Samples are introduced via a third flow channel and mixed with the buffer. The conversion of urea to ammonia is quantitative for sample concentrations of less than 0.03 M for a flow rate of 40 ml h-1. The reactor electrode shows a Nernstian slope of 57 mV/decade for 5·10-5–3·10-2 M urea. The response is independent of variations in the flow rate, enzyme activity or temperature of the reactor.  相似文献   

13.
One of the methods of industrial dimethyl ether production is the catalytic dehydration of methanol. In this research work, methanol dehydration reactor has been modeled using continuous model and its results have been compared with experimental works and Voronoi pore network model. A 1D heterogeneous dispersed plug flow model was utilized to model an adiabatic fixed-bed reactor for the catalytic dehydration of methanol to dimethyl ether. The mass and heat transfer equations are numerically solved for the reactor. The concentration of the reactant and products and also the temperature varies along the reactor, therefore the effectiveness factor would also change in the reactor. We used the the effectiveness factor that was simulated according to the diffusion and reaction in the catalyst pellet as a Voronoi pore network model. Sensitivity analysis was performed to determine the influence of T, P and weight hourly space velocity on performance of the chemical reactor. Acceptable agreement was reached between the measured and the model data. The results showed that the maximum reaction conversion was obtained about 90 % at WHSV = 10 h?1 and T = 560 K, while the inlet temperature (Tinlet) had a greater effect on methanol conversion. In addition, the effect of water in the feed on methanol conversion was quantitatively studied. Also, the deactivation kinetics of γ-Al2O3 heterogeneous-acidic catalyst in methanol to dimethyl ether dehydration process was studied using integral analysis method. Based on independent deactivation kinetics, a second order was found that accurately fitted the experimental conversion time data. The main reaction activation energies and catalyst deactivation energies were 143.1 and ?102.1 kJ/mol, respectively.  相似文献   

14.
Dynamics of spatiotemporal thermal patterns during the catalytic CO oxidation over Pd supported on a glass-fiber catalytic cloth rolled into a tube of 20 mm diameter and 80 mm length has been studied in a continuous flow reactor by IR thermography. A specially designed aluminum mirror built in the reactor provided image of the entire surface of the horizontally held catalytic tube. With flow in the main axial direction and through the tube surface, we observed periodic motions of a pulse, which was born downstream and propagated upstream. The temperature pulse motion was accompanied by conversion oscillations of CO2. With flow in the main axial direction, parallel to the surface, we observed a stationary hot zone after an oscillatory transient. These patterns can be simulated with a plug-flow-reactor-like heterogeneous reactor model that incorporates previously determined kinetic and transport parameters.  相似文献   

15.
Operating costs for the production of Baker’s yeast from hydrolyzed permeate from the ultrafiltration of cottage cheese whey were calculated as a function of the level of lactose conversion in the immobilized lactase reactor. These costs were calculated for the case of 90% conversion of lactose in the reactor and compared to those that result when running the reactor at lower conversions with recycle of unreacted lactose. Total operating costs were estimated by combining individual operating costs for the immobilized enzyme reactor, costs associated with processing a lactose recycle stream, and energy costs associated with cooling the reactor feed stream and sterilizing the hydrolysate stream. It was determined that operating costs are minimized at about 9.9 ¢/lb. of lactose when the reactor is run at approx. 72% conversion. This represents a savings of 2.4 ¢/lb. of lactose over the case of a once-through 90% conversion of lactose in the reactor.  相似文献   

16.
Continuous production of lactic acid in a cell recycle reactor   总被引:3,自引:0,他引:3  
The production of lactic acid from glucose has been demonstrated using a CSTR (continuous stirred-tank reactor) with cell recycle. Studies were conducted withLactobacillus delbrueckii at a fermentation temperature of 42°C and a pH of 6.25. A cell density of 140 g dry weight/L and a volumetric productivity of 150 g/L.h, with complete glucose consumption, were obtained. It was not possible to obtain a lactic acid concentration above 60 g/L because of product inhibition. A cell purge was not necessary to maintain high viability bacteria culture or to obtain a steady state. At steady state the net cell growth appeared to be negligible. The specific glucose consumption for cell maintenance was 0.33 g glucose/g cells-h.  相似文献   

17.
Polymer chain coils with entanglement is a crucial scale of structures in polymer materials since their relaxation times are matching practical processing times. Based on the phenomenological model of polymer chain coils and a new finite element approach, we have designed a computer software including solver, pre- and post-processing modules, and developed a digital analysis technology for the morphology of polymer chain coils in flow fields (DAMPC). Using this technology we may simulate the morphology development of chain coils in various flow fields, such as simple shear flow, elongational flow,and any complex flow at transient or steady state. The appli cations made up to now show that the software predictions arecomparable with experimental results.  相似文献   

18.
Continuous ATRP of MMA was carried out in a flow tubular reactor with varying flow rate, temperature, and [monomer]/[initiator] ratios. Changing the flow rate directly relates to the reaction time. This process produces polymer continuously with the conversion increasing with decreasing flow rate. The molecular weight (relating to the flow rate) increases linearly with conversion which is also observed when the [monomer]/[initiator] ratio was changed. The effect of altering the reaction temperature was studied and the apparent activation energy of the propagation reaction of MMA in this system was calculated to be ∼56.9 kJ mol−1, close to the values reported previously. Preparation of diblock copolymers is also reported with varying comonomers and the conversion, and SEC results suggested that this continuous system is an excellent and facile way to have a continuous ATRP process.  相似文献   

19.
对无机膜控氧反应器的优化进行了探讨,提出优化依据,并在自制的均布膜反应器及非均布膜反应器中,进行丁烯氧化脱氢制丁二烯反应的研究,系统地考察了反应温度、进料量、氧/烃比对丁烯转化率及丁二烯选择性的影响,结果表明,在相同的反应条件下,非均布膜反应器中的反应效果优于均布膜反应器中的反应效果,建立了模拟膜反应器的数学模型,其计算结果与实验数据符合良好。  相似文献   

20.
Summary: A grid falling film tower (GFFT) has been invented as an ideal polycondensation reactor. In this reactor, polymer melt flows through multi-layers grids from top to bottom to form falling film owing to gravity without agitation and shear; large gas-liquid interfacial area is generated; the grids are perpendicular between adjacent layers to ensure film renewal and to achieve uniformly flowing. The fluid flow in this reactor has little back-mixing and dead zone, which is near to plug flow. All melts are under the state of thin film which avoids the negative effect of hydrostatic head on the mass transfer impetus. Furthermore, the GFFT has wide operation flexibility as well as adjustable configuration parameters to meet different demands. A pilot scale GFFT with the height of 4.0 meters has been applied to polyester polycondensation process. The intrinsic viscosity of polyethylene terephthalate increased from 0.45 dl/g to 0.8–0.9 dl/g successfully. GFFT is supposed to be an universal apparatus for many devolatilization processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号