首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The paper describes the synthesis of low molecular mass poly(allyl chloride) (PAC) (M n= 856-3834 g mol-1) using Lewis acid (ALCL3, FeCL3, TiCL4) and al powder. Branching in PAC was indicated on the basis of elemental analysis and 1H-NMR spectroscopy. azidation of pac could be carried out at 100°C by using NaN3 and DMSO as solvent. Curing of poly(allyl azide) (PAA) by cyclic dipolar addition reaction with EGDMA (ethylene glycol dimethacrylate, 5-45 phr) was investigated by differential scanning calorimetry and structure of cured polymer was confirmed by FTIR. A two-step mass loss was exhibited by uncured and cured PAA in nitrogen atmosphere. A mass loss of 20-28% (155-274°C) and 50-61% (330-550°C) was observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
3,5‐bis(4‐aminophenoxy)phenyl phenylcarbamate—a novel AB2‐type blocked isocyanate monomer and 3,5‐bis{ethyleneoxy(4‐aminophenoxy)}phenyl carbonyl azide—a novel AB2‐type azide monomer were synthesized in high yield. Step‐growth polymerization of these monomers were found to give a first example of hyperbranched poly (aryl‐ether‐urea) and poly(aryl‐alkyl‐ether‐urea). Molecular weights (Mw) of the polymer were found to vary from 1,858 to 52,432 depending upon the monomer and experimental conditions used. The polydispersity indexes were relatively narrow due to the controlled regeneration of isocyanate functional groups for the polymerization reaction. The degree of branching (DB) was determined using 1H‐NMR spectroscopy and the values ranged from 87 to 54%. All the polymers underwent two‐stage decomposition and were stable up to 300 °C. Functionalized end‐capping of poly(aryl‐ether‐urea) using phenylchloroformate and di‐t‐butyl dicarbonate (Boc)2O changed the thermal properties and solubility of the polymers. Copolymerization of AB2‐type blocked isocyante monomer with functionally similar AB monomer were also carried out. The molecular weights of copolymers were found to be in the order of 6 × 105 with narrow dispersity. It was found that the Tg's of poly(aryl‐alkyl‐ether‐urea)s were significantly less (46–49 °C) compared to poly(aryl‐ether‐urea)s. Moreover the former showed melting transition at 154 °C, which was not observed in the latter case. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2959–2977, 2007  相似文献   

3.
The reaction between bis(2,2,2-trifluoroethyl) phenylphosphonite and trimethylsilyl azide at temperatures from 70 to 120°C provides a mixture of bis(2,2,2-trifluoroethoxy)phenylN-(trimethylsilyl) phosphoranimine and poly(phenyl-2,2,2-trifluoroethoxyphosphazene). The polymer is probably formed by phosphine azide intermediates because the phosphor-animine is thermally stable up to 200°C. The polyphosphazene is an amorphous stereo-random polymer with a glass transition temperature at ?31°C.  相似文献   

4.
A novel method was developed to prepare poly(benzoxazinone‐imide) by the dealcoholization of poly(amide‐imide), having pendent ethoxycarbonyl groups, which was prepared from poly(amide acid). The poly(amide acid) was prepared from the reaction of pyromellitic dianhydride and 4,4′‐diamino‐6‐ethoxycarbonyl benzanilide. The curing behavior of the poly(amide acid) was monitored by DSC, which indicated the presence of two broad endotherms, one with maximum at 153 °C due to imide‐ring formation and the other with maximum at 359 °C due to benzoxazinone‐ring formation. The poly(amide acid) was thermally treated at 300 °C/1 h to get poly(amide‐imide) with pendent ester groups, then at 350 °C/2 h to convert into poly(benzoxazinone‐imide) by dealcoholization. Viscoelastic measurements of the poly(amide‐imide) showed that the storage modulus dropped at about 280 °C with glass‐transition temperature (Tg ) at about 340 °C. The storage modulus of poly(benzoxazinone‐imide), however, was almost constant up to 400 °C and no Tg was detected below 400 °C. Also, the tensile modulus and tensile strength of the poly(benzoxazinone‐imide) was much higher than that of the poly(amide‐imide). The 5% decomposition of poly(benzoxazinone‐imide) film was at 535 °C, which reflects its excellent thermal stability. Also, poly(benzoxazinone‐imide) showed more hydrolytic stability against alkali in comparison to polyimides. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1647–1655, 2000  相似文献   

5.
Novel sulfur‐containing biphenol monomers were prepared in high yields by the reaction of 4‐mercaptophenol with chloropyridazine or chlorophthalazine compounds. High‐molecular‐weight poly(arylene ether)s were synthesized by a nucleophilic substitution reaction between these sulfur‐containing monomers and activated difluoro aromatic compounds. The inherent viscosities of these polymers ranged from 0.34 to 0.93 dL/g. The poly(pyridazine)s exhibited glass‐transition temperatures greater than 165 °C. The poly(phthalazine)s showed higher glass‐transition temperatures than the poly(pyridazine)s. A polymer synthesized from a bisphthalazinebiphenol and bis(4‐fluorophenyl)sulfone had the highest glass‐transition temperature (240 °C). The thermal stabilities of the poly(pyridazine)s and poly(phthalazine)s showed similar patterns of decomposition, with no significant weight loss below 390 °C. The poly(phthalazine)s were soluble in chlorinated solvents such as chloroform, and the poly(pyridazine)s were soluble in dipolar aprotic solvents such as N,N′‐dimethylacetamide. The soluble poly(pyridazine)s and poly(phthalazine)s could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 262–268, 2007  相似文献   

6.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

7.
Synthesis and thermal decomposition of GAP-Poly(BAMO) copolymer   总被引:2,自引:0,他引:2  
An energetic copolymer of glycidyl azide polymer (GAP) and poly(bis(azidomethyl)oxetane (Poly(BAMO)) was synthesized using the Borontrifluoride-dimethyl ether complex/diol initiator system. The synthesized copolymer exhibited the characteristics of an energetic thermoplastic elastomer (ETPE). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to study the thermal decomposition behavior and the results were compared with that of the constituent homopolymers. The main weight loss step in all the polymers coincides with the exothermic dissociation of the azido groups in the side chain. In contrast with the behavior of the homopolymers, the copolymer shows a broad exothermic shoulder peak at 298 °C after the main exothermic decomposition peak at 228 °C. Kinetic analysis was performed by Vyazovkin's model-free method, which suggests that the activation energy of the main decomposition step is around 145 kJ/mol and for the second shoulder it is around 220 kJ/mol. Fourier transform infra red (FTIR) spectra of the degradation residues show that the azido groups in the copolymer decompose in two stages at different temperatures which is responsible for the double decomposition behavior.  相似文献   

8.
A series of new poly(ether imide)s containing the naphthalimide moiety were prepared from bis(4-fluorobenzoyl)naphthalimides and several bisphenols by aromatic nucleophilic displacement polymerization. These polyimides had inherent viscosities in the range of 0.31–1.04 dL/g in chloroform and glass transition temperatures of 283.0–341.6°C by differential scanning calorimetry. The onset temperature for 5% weight loss for all the polymers was over 448°C, as assessed by thermogravimetry at a heating rate 10°C/min in nitrogen. In addition, these novel polyimides exhibited good solubility in organic solvents including N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, 1,1,2,2-tetrachloroethane and chloroform. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3227–3231, 1999  相似文献   

9.
Azide telechelics of poly(dimethylsiloxane) (PDMS), polypropylene oxide (PPO), and polyethylene oxide (PEO) were synthesized from the corresponding epoxy telechelics and characterized. These oligomeric azides were chain extended by reaction with bispropargyl ether of bisphenol A (BPEBA) through a copper‐catalyzed azide‐alkyne cycloaddition (CuAAC) reaction. PDMS manifested a faster reaction in contrast to PPO or PEO. The chain‐extended polymers underwent cross‐linking above 170°C through thermal cleavage of residual (terminal) azide groups. This was manifested in their rheograms and was further substantiated by FTIR and NMR spectroscopic analyses. Dynamic mechanical analyses of the cross‐linked polymers exhibited characteristic transitions of hard and soft segments, implying microphase separation in the system. Microscopic evaluation of the thermally cross‐linked sample revealed a porous morphology with microsized to nanosized pores.  相似文献   

10.
王锦艳 《高分子科学》2016,34(10):1208-1219
Functionalized poly(phthalazinone ether sulfone ketone) was synthesized by successive chloromethylation and azidation, followed by curing reaction with the propargyl end-groups of various molecular weight crosslinking agents in the presence of Cu(Ⅰ) catalyst via the azide-alkyne click reaction. The influences of the chain length of crosslinking agents on the poly(phthalazinone ether sulfone ketone) system were studied. FTIR and DSC tests demonstrated certain crosslinking by azide-alkyne reaction with the formation of triazole ring. DSC results showed that curing temperature shifted to lower temperatures considerably in the presence of Cu(Ⅰ) catalyst. TGA showed cured polymers were of much higher thermal stability, including higher thermal decomposition temperatures and higher char-yielding properties. After being cured, the polymers became insoluble in organic solvents and the gel fraction of the cured polymers exceeded 71%. Wide-angle X-ray diffraction results indicated there was a short distance order in the poly(ether sulfone)(PES) main chain except for the azido methyl poly(phthalazinone ether sulfone ketone) and 4,4'-bis(2-propynyloxy) biphenyl( AMPPESK-BP) system.  相似文献   

11.
Novel aromatic polyimides containing bis(phenoxy)naphthalene units were synthesized from 1,5-bis(4-aminophenoxy)naphthalene (APN) and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by cyclodehydration to polyimides. The poly(amic acid)s had inherent viscosities between 0.72 and 1.94 dL/g, depending on the tetracarboxylic dianhydrides used. Excepting the polyimide IVb obtained from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), all other polyimides formed brown, flexible, and tough films by casting from the poly(amic acid) solutions. The polyimide synthesized from BPDA was characterized as semicrystalline, whereas the other polyimides showed amorphous patterns as shown by the x-ray diffraction studies. Tensile strength, initial moduli, and elongation at break of the APN-based polyimide films ranged from 105–135 MPa, 1.92–2.50 GPa, and 6–7%, respectively. These polyimides had glass transition temperatures between 228 and 317°C. Thermal analyses indicated that these polymers were fairly stable, and the 10% weight loss temperatures by TGA were recorded in the range of 543–574°C in nitrogen and 540–566°C in air atmosphere, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Two sulfonyl group-containing bis(ether anhydride)s, 4,4′-[sulfonylbis(1,4-phenylene)dioxy]diphthalic anhydride ( IV ) and 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]diphthalic anhydride (Me- IV ), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of the bisphenolate ions of 4,4′-sulfonyldiphenol and 4,4′-sulfonylbis(2,6-dimethylphenol) with 4-nitrophthalonitrile in N,N-dimethylformamide (DMF). High-molar-mass aromatic poly(ether sulfone imide)s were synthesized via a conventional two-stage procedure from the bis(ether anhydride)s and various aromatic diamines. The inherent viscosities of the intermediate poly(ether sulfone amic acid)s were in the ranges of 0.30–0.47 dL/g for those from IV and 0.64–1.34 dL/g for those from Me- IV. After thermal imidization, the resulting two series of poly(ether sulfone imide)s had inherent viscosities of 0.25–0.49 and 0.39–1.19 dL/g, respectively. Most of the polyimides showed distinct glass transitions on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 223–253 and 252–288°C, respectively. The results of thermogravimetry (TG) revealed that all the poly(ether sulfone imide)s showed no significant weight loss before 400°C. The methyl-substituted polymers showed higher Tg's but lower initial decomposition temperatures and less solubility compared to the corresponding unsubstituted polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1649–1656, 1998  相似文献   

13.
Chemical structure investigations of polyurethane binders based on difunctional linear glycidyl azide polymer (GAP) cured with isophorone diisocyanate (IPDI) were performed using 13C-NMR spectroscopy in solution. Chemical functions such as urethane, urea, allophanate, and biuret were all expected to be detected in these polymeric binders. 13C-NMR assignment of the C O urethane and urea functions were found in these polymers as determined by using model compounds of IPDI. The 13C-NMR data gathered in this article can be considered as basic parameters for further characterization of polyurethane structure based on IPDI. Also, 13C CP MAS NMR spectra of GAP-IPDI-based polymers were carried out to identify the various chemical functions present in solid polyurethane elastomer. In addition, the curing evolution of a GAP-IPDI-based polymer at 50 and 80°C in bulk was monitored, and the reaction path of the binder was readily determined. Some conclusions on the effects of the cure catalyst and the curing temperature were also drawn. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2991–2998, 1997  相似文献   

14.

Four new poly(etherimide)s have been synthesized by reaction with commercially available bisphenol‐A‐(diphthaleic anhydride) (BPADA) with four different kinds of diamines, namely 4,4′‐bis(p‐aminophenoxy‐3,3″‐trifluoromethyl) terphenyl,4,4′‐bis(3″‐trifluoromethyl‐p‐aminobiphenyl ether)biphenyl,2,6‐bis(3′‐trifluoromethyl‐p‐aminobiphenyl ether)pyridine, 2,5‐bis(3′‐trifluoromethyl‐p‐aminobiphenylether)thiopene. The poly(etherimide)s are named as 1a, 1b, 1c and 1d, respectively. The synthesized polyimides show good solubility in various organic solvents. The polyimide films had low water absorption of 0.19–0.30% and low dielectric constant of 2.79–3.1 at 1 MHz. These polyimides showed very high thermal stability with decomposition temperature (5% wt loss) up to 522°C in nitrogen. Transparent thin films of these polyimides exhibited tensile strength up to 97 MPa, a modulus of elasticity up to 1.56 GPa and elongation at break up to 20%.  相似文献   

15.
A new cardo diamine monomer, 5,5-bis[4-(4-aminophenoxy)phenyl]-4,7-methanohexahydroindane (II), was prepared in two steps with high yield. The monomer was reacted with six different aromatic tetracarboxylic dianhydrides in N,N-dimethylacetamide (DMAc) to obtain the corresponding cardo polyimides via the poly(amic acid) precursors and thermal or chemical imidization. All the poly(amic acid)s could be cast from their DMAc solutions and thermally converted into transparent, flexible, and tough polyimide films which were further characterized by x-ray and mechanical analysis. All of the polymers were amorphous and the polyimide films had a tensile strength range of 89–123 MPa, an elongation at break range of 6–10%, and a tensile modulus range of 1.9–2.5 GPa. Polymers Vc, Ve, and Vf exhibited good solubility in a variety of solvents such as N-methyl-2-pyrrolidinone (NMP), DMAc, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridine, γ-butyrolactone, and even in tetrahydrofuran and chloroform. These polyimides showed glass-transition temperatures between 274 and 299°C and decomposition temperatures at 10% mass loss temperatures ranging from 490 to 521°C and 499 to 532°C in nitrogen and air atmospheres, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2815–2821, 1999  相似文献   

16.
Metal poly(vinyl acetates) polymers were obtained by radical polymerization with azodiisobutyronitrile. The thermal stabilities of the metal polymers (M-PVAC) have been studied by thermogravimetry (TG) between 25 and 550°C under nitrogen flow. The decomposition temperature was obtained from the maximum of the first derivative from TG curve. The kinetic parameters of the thermal decomposition were determined by the Arrhenius equation. All these polymers degrade mainly in a single step with a very small second step, probably via a complex reaction. The kinetic data thus obtained show that the thermostabilities decrease in the order: Sb-PVAc~Ge-PVAc>Bi-PVAc~Cd-PCAc>Ag-PVAc~PVAc>Zn-PVAc> Au-PVAc>In-PVAc>Sn-PVAc>Ga-PVAc>Pd-PVAc. Again, the thermal stability is dependent upon the metal incorporated in the backbone polymer. They loose weight after 320°C. The order of reaction from the thermal decomposition of these metal polymers was found to be ?0.5 for the first step and 0 for the second. The pre-exponential factor, the reaction order and the activation energy of the decomposition for metal (PVAc) have been determined in most of them.  相似文献   

17.
A new vinyl azide monomer, 2‐chlorallyl azide (CAA), has been synthesized from commercially available reagent in one step. The reversible addition fragmentation chain transfer (RAFT) copolymerization of CAA with methyl acrylate (MA) was carried out at room temperature using a redox initiator, benzoyl peroxide (BPO)/N,N‐dimethylaniline (DMA), in the presence of benzyl 1H‐imidazole‐1‐carbodithioate (BICDT). The polymerization results showed that the process bears the characteristics of controlled/living radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow, and a linear relationship existing between ln([M]0/[M]) and the polymerization time. Chain extension polymerization was performed successfully to prepare block copolymer. Furthermore, the azide copolymers were functionalized by CuI‐catalyzed “click” reaction with alkyne‐containing poly(ethylene glycol) (PEG) to yield graft copolymers with hydrophilic PEG side chains. Surface modification of the glass sheet was successfully achieved via the crosslinking reaction of the azide copolymer under UV irradiation at ambient temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1348–1356, 2010  相似文献   

18.
A bulk step‐growth polymerization of multifunctional azides and alkynes through the copper (I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) reaction is described. The polymerization kinetics of two systems containing different diynes, bisphenol E diyne (BE‐diyne)/bisphenol A bisazide (BA‐bisazide) and tetraethylene glycol diyne (TeEG‐diyne)/BA‐bisazide, are evaluated by differential scanning calorimetry (DSC), shear rheology, and thermogravimetric analysis. The effects of catalyst concentration on reaction kinetics are investigated in detail, as are the thermal properties (glass transition and decomposition temperatures) of the formed polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4093–4102, 2010  相似文献   

19.
A novel spirobichroman unit containing dietheramine, 6,6′-bis(4-aminophenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was prepared by the nucleophilic substitution of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman with p-chloronitrobenzene in the presence of K2CO3 followed by hydrazine catalytic reduction of the intermediate dinitro compound. A series of polyimides were synthesized from diamine 3 and various aromatic dianhydrides by a conventional two-stage procedure through the formation of poly(amic-acid)s followed by thermal imidization. The intermediate poly(amic-acid)s had inherent viscosities of 1.00–2.78 dL/g. All the poly-(amic-acid)s could be thermally cyclodehydrated into flexible and tough polyimide films, and some polyimides were soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). These polyimides had glass transition temperatures (Tg) in the range of 236–256°C, and 10% weight loss occurred up to 450°C. Furthermore, a series of polyamides and poly(amide-imide)s with inherent viscosities of 0.71–2.29 dL/g were prepared by direct polycondensation of the diamine 3 with various aromatic dicarboxylic acids and imide ring-containing dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides and poly(amide-imide)s were readily soluble in polar solvents such as DMAc, and tough and flexible films could be cast from their DMAc solutions. These polymers had glass transition temperatures in the range of 137–228°C and 10% weight loss temperatures in the range of 419–443°C in air and 404–436°C in nitrogen, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1487–1497, 1997  相似文献   

20.
1,6-Bis(4-aminophenoxy)naphthalene ( I ) was used as a monomer with various aromatic tetracarboxylic dianhydrides to synthesize polyimides via a conventional two-stage procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by thermal cyclodehydration to polyimides. The diamine ( I ) was prepared through the nucleophilic displacement of 1,6-dihydroxynaphthal-ene with p-chloronitrobenzene in the presence of K2CO3, followed by catalytic reduction. Depending on the dianhydrides used, the poly(amic acid)s obtained had inherent viscosities of 0.73–2.31 dL/g. All the poly(amic acid)s could be solution cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimide films had a tensile modulus range of 1.53–1.84 GPa, a tensile strength range of 95–126 MPa, and an elongation range at break of 9–16%. The polyimide derived from 4,4′-sulfonyldiphthalic anhydride (SDPA) had a better solubility than the other polyimides. These polyimides had glass transition temperatures between 248–286°C (DSC). Thermogravimetric analyses established that these polymers were fairly stable up to 500°C, and the 10% weight loss temperatures were recorded in the range of 549–595°C in nitrogen and 539–590°C in air atmosphere. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号