共查询到20条相似文献,搜索用时 0 毫秒
1.
Derek R. Langstieh Prof. Richard H. Duncan Lyngdoh Prof. R. Bruce King Prof. Henry F. Schaefer 《Chemphyschem》2021,22(19):2014-2024
Vanadium forms binuclear complexes with a variety of ligands often containing V≡V triple bonds. Many tetragonal divanadium paddlewheel complexes with bridging bidentate ligands have been experimentally characterized. This research exhaustively treats model tetragonal, trigonal, and digonal paddlewheel-type divanadium complexes V2Lx (L=formamidinate, guanidinate, and carboxylate; x=2, 3, 4), each in the three lowest-energy spin states. The V−V formal bond orders are obtained from metal−metal MO diagrams for representative structures. A number of short V−V multiple bonds of order 3, 3.5, and 4 are found in these model complexes. The short V≡V triple bonds and singlet ground state predicted here for the model tetragonal complexes correspond well with the limited experimental results for the series of known tetragonal paddlewheels. Digonal divanadium lanterns with very short V−V quadruple bonds are predicted as interesting synthetic targets. The V−V bond distances are categorized into distinct ranges according to the formal bond order values from 0.5 to 4. These bond length ranges are compared with the ranges compiled for other divanadium complexes including carbonyl complexes. 相似文献
2.
Dr. Yu Gong Prof. Dr. Lester Andrews Dr. Charles W. Bauschlicher Jr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(39):12446-12451
The scandium oxydifluoride free radical, OScF2, is produced by the spontaneous, specific reaction of laser ablated Sc atoms with OF2 in solid argon and characterized by using matrix infrared spectroscopy and theoretical calculations. The OScF2 molecule is predicted to have C2v symmetry and a 2B2 ground state with an unpaired electron located primarily on the terminal oxygen atom, which makes it a scandium difluoride molecule coordinated by a neutral oxygen atom radical in forming the Sc? O single bond. The closed shell singlet OScF molecule with an obtuse bent geometry has a much shorter Sc? O bond of 1.682 Å than that of the OScF2 radical (1.938 Å) on the basis of B3LYP calculations. The Sc? O bond in OScF consists of two covalent bonds and a dative bond in which the oxygen 2pπ lone pair donates electron density into an empty Sc 3d orbital thus forming a triple oxo bond. Density functional calculations suggest it is highly exothermic for fluorine transfer from OF2 to scandium, which favors the formation of the OScF2 radical species as well as the OScF molecule after fluorine loss. 相似文献
3.
Dr. Liubin Wang Youxuan Ni Dr. Xuesen Hou Li Chen Prof. Fujun Li Prof. Jun Chen 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(49):22310-22315
Organic electrode materials suffer from low electronic conductivity and poor structure stability. Herein, a metal–organic polymer, Ni-coordinated tetramino-benzoquinone (Ni-TABQ), is synthesized via d–π hybridization. The polymer chains are stitched by hydrogen bonds to feature as a robust two-dimensional (2D) layered structure. It offers both electron conduction and Na+ diffusion pathways along the directions of the polymer chains and the hydrogen bonds. With both the conjugated benzoid carbonyls and imines as the redox centers for the insertion and extraction of Na+, the Ni-TABQ delivers high capacities of about 469.5 mAh g−1 at 100 mA g−1 and 345.4 mAh g−1 at 8 A g−1. The large capacities are sustained for 100 cycles with almost 100 % coulombic efficiencies. The exceptional electrochemical performance is attributed to the unique 2D electron conduction and Na+ diffusion pathways enabled by the robust Ni–N and hydrogen bonds. 相似文献
4.
Tayebani M Feghali K Gambarotta S Yap GP Thompson LK 《Angewandte Chemie (International ed. in English)》1999,38(24):3659-3661
In spite of the short Nb-Nb distance (2.268 ?) and the presumable existence of an Nb identical withNb bond, the paddle-wheel-shaped diniobium(II) complex 1 is paramagnetic. Theoretical calculations indicate that the presence of LiCl moieties on the intermetallic axis lowers the Nb-Nb bond order and is responsible for the observed paramagnetism. 相似文献
5.
6.
7.
Degradation of the Side Chain of (−)‐Sclareol: A Very Short Synthesis of nor‐Ambreinolide and Ambrox
《合成通讯》2013,43(19):3631-3643
Abstract The synthesis of nor‐Ambreinolide (8) from (‐)‐sclareol (1) was carried out by treatment with KMnO4‐Ac2O and further alkaline hydrolysis. 8 was directly transformed into (‐)‐ambrox (11) by reduction with metal borohydride in the presence of Lewis acids. 相似文献
8.
Oxidative addition is the standard process for single-bond activation in transition metal catalysis and it is known to operate for many types of bonds, but challenging σ-bonds e. g. C(sp3)−F and C(sp3)−C(sp3) bonds are the exceptions in this respect. This short review aims at demonstrating how both α- and β-eliminations may be better options for activation of unstrained C−F and C−C single bonds. Selected examples of such eliminations are presented with a mechanistic focus indicating how unstrained and unactivated C−C and C−F bonds can be broken by employing α- and β-eliminations in transition metal hydrocarbyl ligands. Our examples show that the reaction barrier in β-eliminations is controlled by the s-character of the participating bonds where a higher s-character gives a better overlap in the multi-center transition state thereby increasing the reactivity; still β-aryl eliminations can compete with the classical β-hydrogen eliminations in certain cases. 相似文献
9.
Avalos M Babiano R Cabanillas A Cintas P Jiménez JL Palacios JC Aguilar MA Corchado JC Espinosa-García J 《The Journal of organic chemistry》1996,61(21):7291-7297
The dipolar cycloaddition reactions of 3-methyl-2-(4-nitrophenyl)-4-phenyl-1,3-oxazolium-5-olate (1) and chiral nitroalkenes derived from D-galacto- and D-manno-hept-1-enitols 2 and 3 were found to proceed in a regiospecific manner to afford acyclic pyrrole C-nucleosides (5 and 6) in satisfactory yields. This protocol constitutes a novel and efficient route to such substances. Remarkably, the regiochemistry of this mesoionic-based cycloadditive process is exactly opposite that anticipated from the FMO view of 1,3-dipolar cycloadditions. A preliminary semiempirical PM3 study also reveals the inconsistencies of semiempirical studies with experimental data by applying the FMO approach to münchnone cycloadditions. The structural characteristics of the reagents, products, and transition states have been determined, and this calculation also evaluates the influence of steric and electronic factors involved. Ab initio MO calculations using a model system consisting of 1,3-oxazolium-5-olate with 2-(hydroxymethyl)nitroethylene were also performed. The ab initio study justifies, for the first time, the experimental results of 1,3-dipolar cycloadditions with münchnones. The process occurs through a concerted, slightly asynchronous transition state. 相似文献
10.
We analyze the structure and the solutions of the irreducible k-particle Brillouin conditions (IBCk) and the irreducible contracted Schr?dinger equations (ICSEk) for an n-electron system without electron interaction. This exercise is very instructive in that it gives one both the perspective and the strategies to be followed in applying the IBC and ICSE to physically realistic systems with electron interaction. The IBC1 leads to a Liouville equation for the one-particle density matrix gamma1=gamma, consistent with our earlier analysis that the IBC1 holds both for a pure and an ensemble state. The IBC1 or the ICSE1 must be solved subject to the constraints imposed by the n-representability condition, which is particularly simple for gamma. For a closed-shell state gamma is idempotent, i.e., all natural spin orbitals (NSO's) have occupation numbers 0 or 1, and all cumulants lambdak with k> or =2 vanish. For open-shell states there are NSO's with fractional occupation number, and at the same time nonvanishing elements of lambda2, which are related to spin and symmetry coupling. It is often useful to describe an open-shell state by a totally symmetric ensemble state. If one wants to treat a one-particle perturbation by means of perturbation theory, this mainly as a run-up for the study of a two-particle perturbation, one is faced with the problem that the perturbation expansion of the Liouville equation gives information only on the nondiagonal elements (in a basis of the unperturbed states) of gamma. There are essentially three possibilities to construct the diagonal elements of gamma: (i) to consider the perturbation expansion of the characteristic polynomial of gamma, especially the idempotency for closed-shell states, (ii) to rely on the ICSE1, which (at variance with the IBC1) also gives information on the diagonal elements, though not in a very efficient manner, and (iii) to formulate the perturbation theory in terms of a unitary transformation in Fock space. The latter is particularly powerful, especially, when one wishes to study realistic Hamiltonians with a two-body interaction. 相似文献
11.
Uroš Todorović Dr. R. Martin Romero Dr. Lucile Anthore-Dalion 《European journal of organic chemistry》2023,26(31):e202300391
N−O σ bonds containing compounds are versatile substrates for organic synthesis under transition metal catalysis. Their ability to react through both polar (oxidative addition, formation of metallanitrene, nucleophilic substitution) and radical pathways (single electron transfer, homolytic bond scission) have triggered the development of various synthetic methodologies, particularly toward synthesizing nitrogen-containing compounds. In this review, we discuss the different modes of activation of N−O bonds in the presence of transition metal catalysts, emphasizing the experimental and computational mechanistic proofs in the literature to help to design new synthetic pathways toward the synthesis of C−N bonds. 相似文献
12.
13.
Dr. Giovanni Bella Dr. Antonio Santoro Prof. Francesco Nicolò Prof. Giuseppe Bruno Dr. Massimiliano Cordaro 《Chemphyschem》2021,22(6):593-605
Hydrogen bond plays a key role in a wide range of inorganic, organic, as well as biological systems. The understanding on how the chemical environment can affect this kind of interaction is crucial to predict its binding strength and consequently the robustness and the dynamic properties of many supramolecular systems. In this paper a new donor-acceptor complex was synthesized and characterized by SCXRD, showing for the first time in an organic system an AA−DD pattern of a particular hydrogen interaction, called dihydrogen bond. Over 250 functionals were computationally evaluated to select the best method to reproduce the binding interaction geometry of this new pattern. Moreover, a new vector force model was used to split the contribution of primary and secondary electrostatic interactions (SEIs), in order to evaluate how the latter one can modify the binding strength of this unusual hydrogen-hydrogen interaction. 相似文献
14.
Dr. Lucia Amidani Dr. Gavin B. M. Vaughan Dr. Tatiana V. Plakhova Dr. Anna Yu. Romanchuk Evgeny Gerber Dr. Roman Svetogorov Stephan Weiss Dr. Yves Joly Prof. Dr. Stepan N. Kalmykov Prof. Dr. Kristina O. Kvashnina 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(1):252-263
The structural characterisation of actinide nanoparticles (NPs) is of primary importance and hard to achieve, especially for non-homogeneous samples with NPs less than 3 nm. By combining high-energy X-ray scattering (HEXS) and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD XANES) analysis, we have characterised for the first time both the short- and medium-range order of ThO2 NPs obtained by chemical precipitation. By using this methodology, a novel insight into the structures of NPs at different stages of their formation has been achieved. The pair distribution function revealed a high concentration of ThO2 small units similar to thorium hexamer clusters mixed with 1 nm ThO2 NPs in the initial steps of formation. Drying the precipitates at around 150 °C promoted the recrystallisation of the smallest units into more thermodynamically stable ThO2 NPs. HERFD XANES analysis at the thorium M4 edge, a direct probe for f states, showed variations that we have correlated with the breakdown of the local symmetry around the thorium atoms, which most likely concerns surface atoms. Together, HEXS and HERFD XANES are a powerful methodology for investigating actinide NPs and their formation mechanism. 相似文献
15.
Sajewicz Mieczysław Kronenbach Dorota Gontarska Monika Wróbel Magdalena Piętka Robert Kowalska Teresa 《平面色谱法杂志一现代薄层色谱法》2009,22(4):241-248
JPC – Journal of Planar Chromatography – Modern TLC - As a result of our earlier studies, we were the first research group to report the spontaneous oscillatory in-vitro chiral... 相似文献
16.
17.
Prof. Dr. Gen Luo Dr. Shanshan Du Pan Wang Fan Liu Prof. Dr. Wen-Xiong Zhang Prof. Dr. Yi Luo 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(58):13282-13287
Molecular-level understanding of metal-mediated white phosphorus (P4) activation is meaningful but challenging because of its direct relevance to the conversion of P4 into useful organophosphorus compounds as well as the complicated and unforeseeable cleavage process of P−P bonds. The related study, however, has still rarely been achieved to date. Here, a theoretical insight into the step-by-step process of three P−P bond cleavage/four P−C bond formation for [P3+P1]-fragmentation of P4 mediated by lutetacyclopentadienes is reported. The unique charge-separated intermediate and the intermolecular cooperation between two lutetacyclopentadienes play a vital role in the subsequent P−P/P−C bond breaking/forming. It is found that, although the first P−C formation is involved in the assembly of the cyclo-P3 [R4C4P3]− unit, the construction of the aromatic five-membered P1 heterocycle [R4C4P]− is completed prior to the cyclo-P3 formation. The reaction mechanism has been carefully elucidated by analyses of the geometric structure, frontier molecular orbitals, bond index, and natural charge, which greatly broaden and enrich the general knowledge of the direct functionalization of P4. 相似文献
18.
The theoretical study has been performed to refine the procedure for calculations of Gibbs free energy with a relative accuracy of less than 1 kcal/mol. Three benchmark intermolecular complexes are examined via several quantum-chemical methods, including the second-order Moller-Plesset perturbation (MP2), coupled cluster (CCSD(T)), and density functional (BLYP, B3LYP) theories augmented by Dunnings correlation-consistent basis sets. The effects of electron correlation, basis set size, and anharmonicity are systematically analyzed, and the results are compared with available experimental data. The results of the calculations suggest that experimental accuracy can be reached only by extrapolation of MP2 and CCSD(T) total energies to the complete basis set. The contribution of anharmonicity to the zero point energy and TDeltaSint values is fairly small. The new, economic way to reach chemical accuracy in the calculations of the thermodynamic parameters of intermolecular interactions is proposed. In addition, interaction energy (De) and free energy change (DeltaA) for considered species have been evaluated by Carr-Parrinello molecular dynamics (CPMD) simulations and static BLYP-plane wave calculations. The free energy change along the reaction paths were determined by the thermodynamic integration/"Blue Moon Ensemble" technique. Comparison between obtained values, and available experimental and conventional ab initio results has been made. We found that the accuracy of CPMD simulations is affected by several factors, including statistical uncertainty and convergence of constrained forces (TD integration), and the nature of DFT (density functional theory) functional. The results show that CPMD technique is capable of reproducing interaction and free energy with an accuracy of 1 kcal/mol and 2-3 kcal/mol respectively. 相似文献
19.
Shuaifeng Hu Wangqiang Shen Le Yang Guangxiong Duan Prof. Peng Jin Prof. Yunpeng Xie Prof. Takeshi Akasaka Prof. Xing Lu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(49):11538-11544
Successful isolation and characterization of a series of Er-based dimetallofullerenes present valuable insights into the realm of metal–metal bonding. These species are crystallographically identified as Er2@Cs(6)-C82, Er2@C3v(8)-C82, Er2@C1(12)-C84, and Er2@C2v(9)-C86, in which the structure of the C1(12)-C84 cage is unambiguously characterized for the first time by single-crystal X-ray diffraction. Interestingly, natural bond orbital analysis demonstrates that the two Er atoms in Er2@Cs(6)-C82, Er2@C3v(8)-C82, and Er2@C2v(9)-C86 form a two-electron-two-center Er−Er bond. However, for Er2@C1(12)-C84, with the longest Er⋅⋅⋅Er distance, a one-electron-two-center Er−Er bond may exist. Thus, the difference in the Er⋅⋅⋅Er separation indicates distinct metal bonding natures, suggesting a distance-dependent bonding behavior for the internal dimetallic cluster. Additionally, electrochemical studies suggest that Er2@C82–86 are good electron donors instead of electron acceptors. Hence, this finding initiates a connection between metal–metal bonding chemistry and fullerene chemistry. 相似文献
20.
Sadi Carnot: His Life and Achievements. Against the Historical Period–a Short Bibliographical Sketch
Jaime Wisniak 《The Chemical Educator》2000,5(1):38-42
The life and work of Sadi Carnot are presented against the historical and political background existing in Europe before and after his birth. His achievements are analyzed and shown to reflect the influence that his family and education had on his development as a scientist, engineer, and military officer. In spite of his short life, the scientific consequences of his work have set the foundations of thermodynamics as we know it today. 相似文献