首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The correlation between the morphology and the deformation mechanism in styrene/butadiene block copolymers having modified architecture and in blends with homopolymer polystyrene (hPS) was studied. It was demonstrated that the morphology formation in the block copolymers is highly coupled with their molecular architecture. In particular, the micromechanical behaviour of a star block copolymer and its blends with polystyrene was investigated by using electron microscopy and tensile testing. A homogeneous plastic flow of polystyrene lamellae (thin layer yielding) was observed if the lamella thickness was in the range of 20 nm. The deformation micromechanism switched to the formation of craze-like deformation zones when the average PS lamella thickness changed to about 30 nm and more.  相似文献   

2.
This paper reports the effects of hard (polystyrene, PS) and soft (polyisobutylene, PIB) segment composition and the molecular architecture (linear versus star, PS and PIB block length) on the morphology and mechanical properties of polystyrene/polyisobutylene (SIBS) block copolymers synthesized by living carbocationic polymerization. Atomic force microscopy, dynamic mechanical thermal analysis and tensile testing verified the phase-separated nature of the block copolymers, which behaved as thermoplastic elastomers (TPEs). The morphology of these TPEs is similar to polydiene-based TPEs, and is defined by the soft/hard segment composition. Interestingly, topology (linear vs star) did not have a major influence on morphology. Tensile testing showed that for both linear and three-arm star block copolymers, the modulus and tensile strength increased while elongation at break decreased with higher PS content. However, three-arm star block copolymers showed larger moduli than their linear homologues with similar PS content and PIB arm length, indicating the influence of molecular architecture on mechanical properties. These results might serve as a foundation for macromolecular engineering design for optimizing properties.  相似文献   

3.
Ethylene-octene copolymers prepared by Dow's INSITE™ constrained geometry catalyst technology present a broad range of solid-state structures from highly crystalline, lamellar morphologies to the granular morphology of low crystallinity copolymers. As the comonomer content increases, the accompanying tensile behavior changes from necking and cold drawing typical of a semicrystalline thermoplastic to uniform drawing and high recovery characteristic of an elastomer. Although changes in morphological features and tensile properties occur gradually with increasing comonomer content, the combined body of observations from melting behavior, morphology, dynamic mechanical response, yielding, and large-scale deformation suggest a classification scheme with four distinct categories. Materials with densities higher than 0.93 g/cc, type IV, exhibit a lamellar morphology with well-developed spherulitic superstructure. Type III polymers with densities between 0.93 and 0.91 g/cc have thinner lamellae and smaller spherulites. Type II materials with densities between 0.91 and 0.89 g/cc have a mixed morphology of small lamellae and bundled crystals. These materials can form very small spherulites. Type I copolymers with densities less than 0.89 g/cc have no lamellae or spherulites. Fringed micellar or bundled crystals are inferred from the low degree of crystallinity, the low melting temperature, and the granular, nonlamellar morphology. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Spin-probe research into nanometer-scale molecular motions occurring in oil-extended styrene–butadiene–styrene diblock copolymers within the glass-transition range is reported. Complex resonance spectra are deconvoluted, and their intricate temperature dependence, resulting from the convolution of individual spectra due to nitroxide molecules located in different phases of the block copolymers, is analyzed. It is proved that a Boltzmann sigmoid accurately describes the temperature dependence of outer line separation. The characteristic inflection point of each sigmoid is used to assign an inflection temperature to each phase of the block copolymers. The inflection temperature coincides with the narrowing temperatures, within the experimental error. It is concluded that the inflection temperature is estimated with a higher accuracy than the narrowing temperature and that it allows a more profound analysis of molecular motions. The anomalous dependence of the glass, narrowing, and inflection temperatures for spin probes immobilized within the hard phase on the oil content has been assigned to morphological modifications, on the nanometer scale, induced by oil molecules added to the block copolymers. The experimental data demonstrate the sensitivity of spin-probe data to modifications of the nanometer-size architecture of block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1960–1971, 2004  相似文献   

5.
The crystallization behavior of two microphase-separated poly(styrene-b-octadecylmethacrylate) block copolymers with lamellar and cylindrical morphology is studied by DSC. The findings are compared with results for a polyoctadecylmetharcylate (PODMA) homopolymer. The situation in the block copolymers is characterized by the occurrence of a confined side chain crystallization in small PODMA domains surrounded by a glassy polystyrene phase. The strength of confinement effects depends significantly on the block copolymer morphology. The crystallization behavior of PODMA lamellae with a thickness of about 10 nm is only slightly affected and similar to the situation in the homopolymer. In cylindrical PODMA domains with a diameter of about 10 nm strong confinement effects are observed: the degree of crystallinity is 50% reduced and the crystallization kinetics slows down. The Avrami coefficients change from n≈3 for the homopolymer and PODMA lamellae to n≈1 for PODMA cylinders. This observation indicates one-dimensional growth in small cylinders or a change from heterogeneous to homogeneous nucleation. Pros and cons of both approaches are discussed. A speculative picture explaining qualitatively the differences in the crystallization behavior of PODMA lamellae and cylinders in a glassy polystyrene matrix is presented.  相似文献   

6.
《Comptes Rendus Chimie》2003,6(8-10):747-754
Dendrimers are compact nanostructures created by manipulation of the molecular architecture. Their density or free volume distribution resembles that of a particle, albeit a low-density particle, that can create unique phenomena. We have found that dendrimer free volume can be manipulated by solvent change that will influence their utility in some applications. For example, it is hypothesized that their low density allows penetration by a covalently attached linear polymer. Manipulation of the dendrimer free volume or linear polymer mass can then be used to create a molecular machine. Also, their unique architecture was found to influence bulk phase separation of a dendritic – linear hybrid block copolymer. Cylinders or lamellae can be formed at exceptional compositions to allow tuning of the morphology beyond that found with linear–linear block copolymer systems. To cite this article: M.E. Mackay, C. R. Chimie 6 (2003).  相似文献   

7.
Atomic force microscopy (AFM) is used to study the phase separation process occurring in block copolymers in the solid state. The simultaneous measurement of the amplitude and the phase of the oscillating cantilever in the tapping mode operation provides the surface topography along with the cartography of the microdomains of different mechanical properties. This technique thus allows to characterize the size and shape of those microdomains and their organization at the surface (e.g. cubic lattice spheres, hexagonal lattice of cylinders, or lamellae). In this study, a series of symmetric triblock copolymers made of a inner elastomeric sequence (poly(butadiene) or poly(alkylacrylate)) and two outer thermoplastic sequences (poly(methylmethacrylate)) is analyzed by AFM in the tapping mode. The microphase separation and their morphology are essential factors for the potential of these materials as a new class of thermoplastic elastomers. Special attention is paid to the control of the surface morphology, as observed by AFM, by the molecular structure of the copolymers (volume ratio of the sequences, molecular weight, length of the alkyl side group) and the experimental conditions used for the sample preparation. The molecular structure of the chains is completely controlled by the synthesis, which relies on the sequential living anionic polymerization of the comonomers. The copolymers are analyzed as solvent-cast films, whose characteristics depend on the solvent used and the annealing conditions. The surface arrangement of the phase-separated elastomeric and thermoplastic microdomains observed on the AFM phase images is discussed on the basis of quantitative information provided by the statistical analysis by Fourier transform and grain size distribution calculations.  相似文献   

8.
1Introduction Owing to the specificity of the long chain,polymers present complexity and versatility.These molecules in the system can be various in their topological struc-tures,such as linear,star,comb or circle structures;meanwhile they can be polymeri…  相似文献   

9.
A new morphology of ternary ABC triblock copolymers is presented which results from the asymmetric interaction between a centre block (poly(ethylene-co-butene)) to different end blocks (polystyrene and poly(methyl methacrylate)). This morphology with the appearance of a “knitting pattern” can be described as an intermediate of a morphology of A, B and C lamellae and a morphology of A and C lamellae with B cylinders at the A/C interface.  相似文献   

10.
聚二甲基硅氧烷(PDMS)的结晶熔融温度(Tm)约为-43℃,远高于其玻璃化转变温度(Tg)(-124℃),为扩大其低温使用范围,需要破坏其链结构规整性以抑制结晶发生。但是我们发现在前人工作中,含PDMS段的嵌段共聚物,即使不破坏PDMS段的链结构规整性,其动态力学谱上有时也观测不到PDMS的结晶峰。遗憾的是这些作者末曾对这一不寻常现象给予足够的重视。无疑,搞清共聚物中PDMS不寻常结晶行为同共聚物形态结构的关系,对提高含有PDMS段的嵌段型热塑性弹性体的低温使用范围将有指导意义。本文报导PB-PDMS中的结晶行为与共聚物形态结构的关系。  相似文献   

11.
Summary: The crystalline structure and phase morphology of linear, branched polyethylenes and their blends during crystallization and subsequent melting were investigated, using a combination of differential scanning calorimetry (DSC), and synchrotron small angle X-ray scattering (SAXS). A linear polyethylene (PE1) with weight-average molecular weight (Mw) of 114 000 g/mol, and two branched polyethylene copolymers, containing 4.8 mol% (PE4) and 15.3 mol% (PE10) hexane, with molecular weights of 93 000 g/mol and 46 000 g/mol were used as pure samples. Two blends, PE1-4 and PE1-10, each with a weight ratio of 50/50, were prepared by solution blending. Our results indicate that in PE4 a phase separation within the branched component itself occurred, forming a broad distribution of lamellar thicknesses during the crystallization process. PE10 on the other hand did hardly crystallize because of the high degree of branching. Co-crystallization of both components took place in blend PE1-4 and liquid-liquid phase separation occurred in the melt of PE1-10. Morphological parameters were determined by using Bragg's law and the correlation function, respectively. The detected semicrystalline morphology can be well described by the lamellar insertion mode where thin lamellae develop between thicker primary lamellae. During subsequent heating, lamellae melted in the reversed sequence of their formation. The evolution of the structural parameters as a function of temperature revealed that surface melting began at first, and then the complete melting of stacks occurred until the final melting temperature was reached.  相似文献   

12.
鲍稔  李莉  邱枫  杨玉良 《化学学报》2011,69(20):2511-2517
借助动态光散射(DLS)和原子力显微镜(AFM)研究了具有复杂结构的comb-coil型聚苯乙烯-异戊二烯嵌段共聚物(S-graft-I)-block-S在聚异戊二烯(PI)选择性溶剂正烷烃中的自组装行为. 结果表明comb-coil型分子在庚烷中形成球形胶束. 同时, 这些胶束的尺寸显示出独特的双分布现象. 除常见的PS-PI相分离机理外, 我们还提出一种comb-coil相分离机理. 这些双分布胶束的形成可能正是两种相分离机理共存的结果. 此外, 借助透射电镜(TEM)进一步研究了选择性、接枝度和接枝链长度对自组装行为的影响. 研究发现增加溶剂选择性或增加接枝链链长以及接枝度, 有利于两种尺寸的胶束的形成以及对应分布峰的完全分离.  相似文献   

13.
Well-defined block and graft copolymers of different types with different compositions and molecular weights, such as styrene(S)-2-vinylpyridine(P) diblock copolymers, SP star-shaped block copolymers, PSP triblock copolymers, styrene(S)-isoprene(I) multiblock copolymers of the (SI)n type, ISP triblock copolymers, SPP graft copolymers and their deuterated samples were prepared. Variations of the morphologies with compositions, molecular weight dependences of the lamellar domain sizes and conformations and distributions of block chains in the lamellar domains were studied in the strong segregation limit. Besides typical morphologies such as spherical, cylindrical and lamellar structures, ordered bi- and tri-continuous structures were found between cylindrical and lamellar structures for SP diblock copolymers, PSP and ISP triblock copolymers, respectively. The composition ranges of morphologies are different for the block and graft copolymers of different types. The molecular weight dependences of lamellar domain sizes are about the same, but their magnitudes are not always the same for the block and graft copolymers of different types. These results are well explained by the theories of Helfand-Wasserman and Semenov. Block chains in lamellae are extended along the direction perpendicular to lamellae, but they are contracted along the parallel direction. The former result is well explained by the theories, but the latter is not. Chains adjacent to the junction points between different block chains are localized near the domain interface, but chains at the free-ends of block chains are widely distributed in the domain with the maximum at the center of domain.  相似文献   

14.
Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide),PEG-b-(PNIPAM)_2,were successfully synthesized through atom transfer radical polymerization(ATRP).A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether(PEG).The copolymers were obtained via the ATRP of N-isopropylacrylamide(NIPAM) at 30℃with CuCl/Me_6TREN as a catalyst system and DMF/H_2O(v/v = 3:1) mixture as solvent.The resulting copo...  相似文献   

15.
Atomic Force Microscopy (AFM) is used to study the phase separation process occurring in block copolymers in the solid state. Measuring simultaneously the amplitude and the phase of the oscillating cantilever in tapping‐mode operation provides the surface topography along with the cartography of microdomains with different mechanical properties. This in turn allows to characterize the organization of the various components at the surface in terms of well‐defined morphologies (e.g., spheres, cylinders, or lamellae). Here this approach is applied to a series of symmetric triblock copolymers made of a central elastomeric segment (polyalkylacrylate) surrounded by two thermoplastic sequences (polymethylmethacrylate). The occurrence of microphase separation in these materials and the resulting microscopic morphology are essential factors for determining their potential applications as a new class of thermoplastic elastomers. This paper describes how the surface morphology can be controlled by the molecular structure of the copolymers (volume ratio between the sequences, molecular weight, length of the alkyl side group) and by the experimental conditions used for the preparation of the films. The molecular structure of the chains is fully determined by the synthesis of the copolymers via living anionic polymerization while the parameters that can be modified when preparing the samples are the nature of the solvent and the thermal annealing of the films. Finally, we report on a systematic comparison between images and approach‐retract curve data. We show that this experimental comparison allows the origin of the contrast that produces the image to be straightforwardly evaluated. The method provides an unambiguous quantitative measurement of the contribution of the local mechanical response to the image. We show that most of the contrast in the height and phase images is due to variations in local mechanical properties and not in topography.  相似文献   

16.
“Block‐random” copolymers—where one or more blocks are themselves random copolymers—offer a flexible modification to the usual block copolymer architecture. For example, in a poly(A)‐poly(A‐ran‐B) diblock consisting of monomer units A and B, the interblock segregation strength can be continuously tuned through the B content of the random block, allowing the design of block copolymers with accessible order‐disorder transitions at arbitrarily high molecular weights. Moreover, the development of controlled radical polymerizations has greatly expanded the palette of accessible monomer units A and B, including units with strongly interacting functional groups. We synthesize a range of copolymers consisting of styrene (S) and acetoxystyrene (AS) units, including copolymers where one block is P(S‐ran‐AS), through nitroxide‐mediated radical polymerization. At sufficiently high molecular weights, near‐symmetric PS‐PAS diblocks show well‐ordered lamellar morphologies, while dilution of the repulsive S‐AS interactions in PS‐P(S‐ran‐AS) diblocks yields a phase‐mixed morphology. Cleavage of a sufficient fraction of the AS units in a phase‐mixed PS‐P(S‐ran‐AS) diblock to hydrogen‐bonding hydroxystyrene (HS) units yields, in turn, a microphase‐separated melt. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:2106–2113, 2009.  相似文献   

17.
Poly(t-butyl methacrylate-b-isoprene-b-t-butyl methacrylate) block copolymers have been synthesized in a controlled manner by anionic techniques. The block copolymers demonstrated predictable chemical composition and stereochemistry, and narrow molecular weight distributions. The addition of a polar solvent was required after complete conversion of the diene block in order to preserve the high 1,4 microstructure of the diene phase and to facilitate the efficient crossover to the poly(t-butyl methacrylate) lithium enolate. Thermomechanical analysis (TMA) of the triblock copolymers demonstrated a microphase separated morphology. The glass transition temperatures of the diene phase and acrylic phase were approximately ?70 and 120°C, respectively. Cast films of the block copolymers from polar and nonpolar solvents were optically clear and elastic.  相似文献   

18.
We present few ordering mechanisms in block copolymer melts in the coarse-graining approach. For chemically homogeneous or modulated confining surfaces, the surface ordering is investigated above and below the order–disorder temperature. In some cases, the copolymer deformation near the surface is similar to the copolymer morphology in bulk grain boundaries. Block copolymers in contact with rough surfaces are considered as well, and the transition from lamellae parallel to perpendicular to the surface is investigated as a function of surface roughness. Finally, we describe how external electric fields can be used to align block copolymer mesophases in a desired direction, or to induce an order–order phase transition, and dwell on the role of mobile dissociated ions on the transition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2725–2739, 2006  相似文献   

19.
In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 °C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation while crystallization of their hydrogenated-butadiene analogs can preserve the micellar-solution structure.  相似文献   

20.
Involving supramolecular chemistry in self‐assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double‐comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4‐vinylpyridine)‐block‐poly(N‐acryloylpiperidine) diblock copolymers and donating 3‐nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae‐in‐lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature‐resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock‐like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self‐assembly of both low‐ and high‐molecular‐weight block copolymer systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号