首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Molecularly imprinted polymers for indole-acetic acid were prepared by co-polymerizing N,N-dimethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate (HEMA), and ethylene glycol dimethacrylate. The dependence of the affinity and selectivity of the imprinted polymers on HEMA content was evaluated chromatographically. The affinity was improved by increasing the HEMA content; the selectivity of the imprinted polymer was best when the HEMA content was approximately 30%, irrespective of monomer content.  相似文献   

2.
An experimental study shows how the emulsion terpolymerization of lauryl methacrylate (LMA) and methyl methacrylate is influenced by the nature of the third monomer. The third monomer is either glycidyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, or styrene. We report the synthesis of terpolymer particles with an appreciably high content of the very hydrophobic LMA (between 0.2515 and 0.238 molar fraction in the monomer mixture) in 60:40 weight water/ethanol mixture as the continuous phase, poly(vinyl pyrrolidone) as a polymeric steric stabilizer, and potassium peroxodisulfate as the initiator. The emulsion terpolymerization proceeds smoothly without the formation of coagulum and leads to particles with an average diameter clearly below 1 μm. We discuss the overall polymerization behavior regarding conversion–time curves, particle morphology, and glass transition temperature of the terpolymers in dependence of the lyophilicity/lyophobicity of the monomer mixture.  相似文献   

3.
《Fluid Phase Equilibria》1999,157(2):285-297
Cloud-point data for the system poly(methyl methacrylate) (PMMA)–CO2–methyl methacrylate (MMA) are measured in the temperature range of 26 to 170°C, to pressures as high as 2500 bar, and with cosolvent concentrations of 10.4, 28.9, and 48.4 wt.%. PMMA does not dissolve in pure CO2 to 255°C and 2550 bar. The cloud-point curve for the PMMA–CO2–10.4 wt.% MMA system exhibits a negative slope that reaches 2500 bar at 105°C. With 28.9 wt.% MMA the cloud-point curve remains relatively flat at ∼900 bar for temperatures between 25 and 170°C. With 48.4 wt.% MMA the cloud-point curve exhibits a positive slope that extends to 20°C and ∼100 bar. Pressure-composition isotherms are also reported for the CO2–MMA system at 40.0, 80.0, 105.5°C. This system exhibits type-I phase behavior with a continuous mixture–critical curve. The Peng–Robinson (PR) and SAFT equations of state model the CO2–MMA data reasonably well without any binary interaction parameters, although the PR equation provides a better representation of the mixture-critical region. It is not possible to obtain even a qualitative fit of the PMMA–MMA–CO2 data with the SAFT equation of state. The SAFT model qualitatively shows that the cloud-point pressure decreases with increasing MMA concentration and that the cloud-point curve exhibits a positive slope for very high concentrations of MMA in solution.  相似文献   

4.
Supercooling of micro- and nanoencapsulated phase change material is widely observed as their diameters depress to a limitation upon cooling. The aim of this study is to suppress the supercooling of nanoencapsulated n-octadecane (NanoC18) using a novel copolymer consisting of long n-alkyl side chains as shell. Nanoencapsulations of n-octadecane with various compositions of poly(methyl methacrylate-co-octadecyl methacrylate) copolymer as shells were carried out by means of miniemulsion polymerization. Fabrication, morphology, diameter distributions, phase change behaviours, and thermal stabilities of nanocapsules were investigated using Fourier transformed infrared spectroscopy, a field-emission scanning electron microscope, a transmission electron microscope, particle size distribution analysis, differential scanning calorimetry, and thermogravimetric analysis. The results indicate that a series of nanocapsules with core/shell structure and spherical shapes are fabricated with average diameters ranging from 373 to 398 nm. The average thickness of the shells is about 60 nm. All the NanoC18 crystallize into a stable triclinic phase via a metastable rotator phase (RI) from the liquid phase. The crystallization temperature of n-octadecane within poly(methyl methacrylate) nanocapsules is considerably lower than that in bulk phase. Supercooling is effectively suppressed using the comb-like copolymer with crystallizable n-octadecyl side chains as shell. Octadecyl methacrylate is not only employed as a reactive costabilizer to suppress the influence of Ostwald ripening during the formation of nanocapsules but also as a functional monomer in the composition of the copolymer shell in order to suppress the supercooling of NanoC18.  相似文献   

5.
The triblock copolymer poly(methyl methacrylate-b-lauryl methacrylate-b-methyl methacrylate) {P(MMA-b-LMA-b-MMA)} has been synthesized by a two stage atom transfer radical polymerization in bulk at near room temperature (ca. 35 °C) using CuCl/pentamethyldiethylenetriamine (PMDETA)/tricaprylylmethylammonium chloride (Aliquat®336) complex as the catalyst and 1,2-bis (bromoisobutyryloxy)ethane (BIBE) as the initiator for the polymerization of LMA in the first stage. The same catalyst was also used for the polymerization of MMA in the second stage. The dynamic mechanical thermal analysis of a sample with the middle block Mn = 82000 and each end block Mn = 14500 showed typical features of a thermoplastic elastomer.  相似文献   

6.
7.

The synthesis of poly[(methyl methacrylate‐co‐hydroxyethyl methacrylate)‐b‐isobutylene‐b‐(methyl methacrylate‐co‐hydroxyethyl methacrylate)] P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished by the combination of living cationic and anionic polymerizations. P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different compositions were prepared by a synthetic methodology involving the transformation from living cationic to anionic polymerization. First, 1,1‐diphenylethylene end‐functionalized PIB (DPE‐PIB‐DPE) was prepared by the reaction of living difunctional PIB and 1,4‐bis(1‐phenylethenyl)benzene (PDDPE), followed by the methylation of the resulting diphenyl carbenium ion with dimethylzinc (Zn(CH3)2). The DPE ends were quantitatively metalated with n‐butyllithium in tetrahydrofuran, and the resulting macroanion initiated the polymerization of methacrylates yielding triblock copolymers with high blocking efficiency. Microphase separation of the thus prepared triblock copolymers was evidenced by the two glass transitions at ?64 and +120°C observed by differential scanning calorimetry. These new block copolymers exhibit typical stress‐strain behavior of thermoplastic elastomers. Surface characterization of the samples was accomplished by angle‐resolved X‐ray photoelectron spectroscopy (XPS), which revealed that the surface is richer in PIB compared to the bulk. However, a substantial amount of P(MMA‐co‐HEMA) remains at the surface. The presence of hydroxyl functionality at the surface provides an opportunity for further modification.  相似文献   

8.
It has been shown that in hydroformulation of methyl methacrylate with rhodium phosphine catalysts prepared “in situ” the regioselectivity is very sensitive not only to the reaction conditions but also to the basicity of the phosphine and to the presence of added Et3N. At low P/Rh ratio chlororhodium species are catalytically active. No side reactions have been detected.  相似文献   

9.
A well-defined,A2B-type,centipede-like copolymer of styrene and methyl methacrylate(PS-PS-PMMA) was synthesized by the combination of living anionic polymerization and atom transfer radical polym-erization(ATRP) . The synthetic approach involves the coupling reaction of polystyrene(PS) backbone bearing 1,1-diphenylethene(DPE) pendant groups,produced by ATRP and Wittig reaction,with living polystyryllithium(PSLi) ,and subsequent polymerization of the resulting 1,1-diphenylmethyl anions with methy methacrylate. The centipede-like copolymer was characterized by 1H NMR,IR,SEC,SLS,and DSC measurements.  相似文献   

10.
A novel phthalazinone modified epoxy acrylate resin for the high temperature resistant ultravioet (UV) curable coating was synthesized. The methacrylated epoxy resins obtained were utilized to UV radiation curing by taking 2.5% (wt%) of photoinitiator in combination with 20% (wt%) of diluent, and generated the interpenetraring polymer networks. The cured film had good thermal and chemical stability.  相似文献   

11.
Aminolysis of nitrilacrylate–divinylbenzene–methyl methacrylate copolymers by diethylenetriamine is studied under various conditions. The effect of temperature and catalyst concentration on the properties of synthesized anion exchangers depending on the duration of aminolysis is investigated. The conditions for synthesizing anion exchangers with high capacity characteristics are proposed according to the study results.  相似文献   

12.
The preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber (MG49):poly(methyl methacrylate) (PMMA) (30:70) were carried out. The effect of lithium tetrafluoroborate (LiBF4) concentration on the chemical interaction, structure, morphology, and room temperature conductivity of the electrolyte were investigated. The electrolyte samples with various weight percentages (wt.%) of LiBF4 salt were prepared by solution casting technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy. Infrared analysis demonstrated that the interaction between lithium ions and oxygen atoms occurred at symmetrical stretching of carbonyl (C=O) (1,735 cm?1) and asymmetric deformation of (O–CH3) (1,456 cm?1) via the formation of coordinate bond on MMA structure in MG49 and PMMA. The reduction of MMA peaks intensity at the diffraction angle, 2θ of 29.5° and 39.5° was due to the increase in weight percent of LiBF4. The complexation occurred between the salt and polymer host had been confirmed by the XRD analysis. The semi-crystalline phase of polymer host was found to reduce with the increase in salt content and confirmed by XRD analysis. Morphological studies by SEM showed that MG49 blended with PMMA was compatible. The addition of salt into the blend has changed the topological order of the polymer host from dark surface to brighter surface. The SEM analyses supported the enhancement of conductivity with the addition of salt. The conductivity increased drastically from 2.0 to 3.4?×?10?5 S cm?1 with the addition of 25 wt.% of salt. The increase in the conductivity was due to the increasing of the number of charge carriers in the electrolyte. The conductivity obeys Arrhenius equation in higher temperature region from 333 to 373 K with the pre-exponential factor σ o of 1.21?×?10?7 S cm?1 and the activation energy E a of 0.46 eV. The conductivity is not Arrhenian in lower temperature region from 303 to 323 K.  相似文献   

13.
The effect of the adsorption of polyvinylpyrrolidone on the surface of highly dispersed silica on the state of interfacial water was studied by 1H NMR spectroscopy and thermally stimulated depolarization with freezing out of the bulk water.  相似文献   

14.
Summary: Two kinds of interpolymer complexes as soluble or precipitate of different structures were obtained in both THF and butan-2-one as common solvents by monitoring the hydrogen-bonding density within homoblends of poly(n-butyl methacrylate-co-4-vinylpyridine) (BM4VP) and poly(n-butyl methacrylate-co-methacrylic acid) (BMMA). A viscometry study confirmed such differences between these two types of interpolymer complexes from the behavior of the reduced viscosity of their blend solutions with feed blend composition. Qualitative and quantitative analyses of the interactions that occurred between these copolymers of relatively bulky side chain length containing various amounts of methacrylic acid and 4-vinylpyridine were carried out by FTIR. The fraction of associated pyridine groups to the carboxylic groups of the BMMA increases as the content of these latter increases in the BMMA/BM4VP blends. The obtained results also showed that the fractions of associated pyridine within the BMMA25/BM4VP26 blends are higher than those within BMMA18/BM4VP19 or BMMA8/BM4VP10. The FTIR analysis of a selected BMMA18/BM4VP19 1:1 ratio, carried out from 80 °C to 160 °C, above the glass transition temperatures of the two constituents of the blend, confirms the presence of strong hydrogen bonding interactions between the pyridine and the carboxylic groups within these blends even at 160 °C. A LCST is expected to occur at higher temperature as shown from the progressive decrease of the fraction of the associated pyridine.  相似文献   

15.
Methacrylate oligosiloxane-based hybrid materials (methacrylate hybrimers) were fabricated by curing the methacrylate oligosiloxane resins synthesized by sol–gel condensation reaction of 3-(trimethoxysilyl)propyl methacrylate (MPTS) and diphenylsilanediol (DPSD) for the LED encapsulant application. The fabricated hybrimers are optically transparent and have a high refractive index up to 1.565 depending on the precursor composition. The lower DPSD content hybrimer, which is the more polymerized and heated in a vacuum to remove the non-polymerized methacrylate groups, produces higher optical transmittance and thermal stability. This behavior is interpreted by thermal degradation of methacylate groups in the hybrimers.  相似文献   

16.
Muchattentionhasbeenpaidtothedevelopmentofnewpolymerelectrolytewithspecialmorphology,soastoimprovetheirelectrochemicalpropertiestomeettheneedsoflithium(ion)battery.Inthiswork,PEMlatexwassynthesizedbyemulsion-fi-eepolymerization.ThemicrophotoofPEMlate...  相似文献   

17.
Interpolyelectrolyte complex (IPEC) dispersions were prepared from chitosan and poly(sodium acrylate), NaPMA, by mixing their solutions, at different carboxyl-to-aminium molar ratios, rCA. Gyration radius was determined by small angle x-ray scattering (SAXS) and showed that, as rCA was increased, IPEC dimensions decreased and reached a minimum at rCA?=?0.75, which was considered the ratio at which IPEC cluster dimensions were minimum, following collapse, phase segregation, nucleation, and growth of larger particles. Pair distance distributions, P(r), became narrower up to rCA?=?0.75, increasing its width from this point. Relaxation-related parameters from dynamic light scattering (DLS) intensity correlation functions (ICFs) identified three main relaxation processes. The fast process, related to free polyelectrolyte molecules random motion disappeared as rCA, was increased. The other two relaxation processes also were a function of rCA and presented marked changes at rCA?=?0.75. At the same value of rCA, the energy of activation for the average relaxation rate showed the occurrence of a clear change in the nature of IPEC-related interactions. As hydrodynamic diameter, determined by DLS, was much larger than the gyration radius determined by SAXS, IPEC particles could be described as being composed by a core, rich in segregated, insoluble material, enveloped by IPEC soluble clusters, possibly in the form of water-rich gels.  相似文献   

18.
Abstract

The first part of this article will deal with the reactions of spirophosphoranes with a P[sbnd]H bond. These compounds contain two five-membered rings and have four oxygen atoms, or three oxygen atoms and one nitrogen atom, or two oxygen and two nitrogen atoms directly bonded to the phosphorus atom, which in all cases bears an hydrogen atom (Scheme 1). The most remarkable property of these compounds is undoubtedly their ability to give rise to a tautomeric equilibrium between the tri- and penta-coordinated structures PIII→PV.  相似文献   

19.
Surfaces are often characterized with phrases like “easy to clean”, “dirt repellent”, “dirt resistant”, “self cleaning” or “ Lotus -Effect®”. Every one of those phrases is used to describe a behavior of surfaces - similar to each other but still different. This article is providing the definition of the Lotus -Effect®, techniques to manufacture self cleaning surfaces and methods to characterize them as well. How to generate a self cleaning surface depends on the substrate and the use later on. It can be as easy as a spray on but on the other hand as complicated as a three step process. Self cleaning surfaces are defined by four parameters - contact angle, roll-off angle, hystereses and C.I.E-Lab Δ-L value.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号