共查询到20条相似文献,搜索用时 14 毫秒
1.
Fajun Zhang Jieping Liu Fengchao Xie Qiang Fu Tianbai He 《Journal of Polymer Science.Polymer Physics》2002,40(9):822-830
In this work, crystallization and melting behavior of metallocene ethylene/α‐olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting‐recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain‐folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 822–830, 2002 相似文献
2.
The heat of fusion measured with differential scanning calorimetry (DSC) is typically divided by a constant value of the heat of fusion of 100% polyethylene (PE) crystal (ΔH) for the estimation of the fraction crystallinity of PE copolymers, regardless of the density [i.e., the short‐chain branching (SCB) concentration]. In this work, values of ΔH of about 288 J/g were determined with a combined DSC and X‐ray diffraction (XRD) method for a series of PE copolymers containing SCB from 0 to 50 Br/1000 C (density = 0.965–0.865 g/cc). There was no systematic change in ΔH observed across this density range. This result supports the suitability of determining the fraction crystallinity of PE of any density by the simple division of the observed heat of fusion determined by DSC by a constant value of ΔH. This DSC method yielded values of PE crystallinity in good agreement with corresponding values determined by XRD for a series of PE copolymers. The determination of ΔH involved a small precision error for higher density (lower SCB) PEs, but the precision error increased for lower density (i.e., higher SCB) PEs. This was due to the difficulty in measuring the heat of fusion for lower density PEs, which exhibited low values of the heat of fusion and melted only slightly above room temperature, and due to the difficulty of measuring lower values of crystallinity by XRD. The crystal thickness measured by small‐angle X‐ray scattering for this series of PE copolymers decreased exponentially from about 280 to 6 Å. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1637–1643, 2002 相似文献
3.
Clara Silvestre Sossio Cimmino Donatella Duraccio Christoph Schick 《Macromolecular rapid communications》2007,28(7):875-881
The isothermal crystallization behavior and the structure and morphology of isotactic poly(propylene) (iPP) and iPP/hydrogenated hydrocarbon resin (HR) 90/10 blend were analyzed. To cover the entire temperature range, isothermal crystallizations were studied using superfast calorimetry at a high cooling rate in the range 0 to 110 °C, and by conventional DSC at a low cooling rate in the range 120 to 140 °C. Structural and morphological changes due to the different thermal treatments were also analyzed. The complete crystallization curve ranging from Tg to Tm showed bimodal crystallization behaviors for both iPP and iPP/HR 90/10 blend. This result is explained by taking into consideration the polymorph properties of iPP. It is in fact assumed that the curve from Tg to 60 °C referred mainly to the crystallization kinetics of the iPP mesomorphic form by homogeneous nucleation, whereas the curve from 60 °C to Tm mainly represented the crystallization kinetic curve for the monoclinic α form by heterogeneous nucleation. This hypothesis is confirmed by the analysis of the structures obtained using wide angle X‐ray experiments. Moreover, the addition of HR to iPP causes a drastic reduction in the crystallization rate of iPP in both regions due to the diluent effect of the miscible resin.
4.
Jianwei Xue Yaguang Lu Binghua Wang Jingbo Chen Changyu Shen Bin Zhang 《Macromolecular rapid communications》2024,45(9):2300704
The isothermal melting behaviors of ultra-high molecular weight polyethylene (UHMWPE) with different entangled states (i.e., nascent and melt-crystallized samples) are studied. For two kinds of UHMWPE samples, the result shows that the relative content of survived crystals (Xs) exponentially decreases with time and reaches a constant value. It is suggested that such a melting behavior is related to the observed nonlinear growth of crystals induced by the kinetically rejected entanglements accumulated at the growth front. Additionally, the exponential decay of Xs with time provides a characteristic melting time (τ) for the melting process. Compared to the melt-crystallized UHMWPE, the τ value of nascent UHMWPE is generally longer even in a higher temperature range, which is mainly because the former has a larger entanglement density difference. Furthermore, these observations demonstrate that UHMWPEs with different entangled states have an analogous melting mechanism since they exhibit a similar melting activation energy (≈1300 kJ mol−1). 相似文献
5.
Uniform branched polyethylenes produced by metallocene catalysts can be subjected to a limited degree of intramolecular fractionation by crystallization or annealing at pressures of 495 MPa. Longer stem lengths in lamellae are more achievable by this process than by treatments at atmospheric pressure. Although the intervention of the hexagonal phase allows greater lamellar stem lengths to be achieved, the small proportion of longer methylene sequence lengths in the melt imposes limitations on the degree of isothermal thickening achievable. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1986–1996, 2005 相似文献
6.
Based on a thermal segregation treatment, a novel semiquantitative method for the characterization of the crystalline segment distribution in branched polyethylene copolymers was established by the results of differential scanning calorimetry being treated with the Gibbs–Thomson equation. The method was used to describe the segment distribution of Ziegler–Natta‐catalyzed linear low‐density polyethylene (Z–N LLDPE), metallocene‐catalyzed linear low‐density polyethylene (m‐LLDPE), and a commercial linear low‐density polyethylene with a wide molecular weight distribution. The isothermal crystallization kinetics of Z–N LLDPE and m‐LLDPE were studied to assess the effect of different segment distributions. According to their molecular characteristics, the crystallization behaviors were analyzed. They indicated that the different segment distributions of the two polymers resulted in different crystallization processes, including the nucleation and growth of crystals under various crystallization conditions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2107–2118, 2002 相似文献
7.
Xueqin Chen Jiajing Xu Hongbin Lu Yuliang Yang 《Journal of Polymer Science.Polymer Physics》2006,44(15):2112-2121
Poly(butylene terephthalate) (PBT)/organo‐attapulgite (ATT) nanocomposites containing 2.5 and 5 wt % nanoparticles loadings were fabricated via a simple melt‐compounding approach. The crystal structure and isothermal crystallization behaviors of PBT composites were studied by wide‐angle X‐ray diffraction and differential scanning calorimetry, respectively. The X‐ray diffraction results indicated that the addition of ATT did not alter the crystal structure of PBT and the crystallites in all the samples were triclinic α‐crystals. During the isothermal crystallization, the PBT nanocomposites exhibited higher crystallization rates than the neat PBT and the varied Avrami exponents when compared with the neat PBT. At the same time, the regime II/III transition was also observed in all the samples on the basis of Hoffman‐Laurizten theory, but the transition temperature increased with increasing ATT loadings. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the neat PBT. It should be reasonable to treat ATT as a good nucleating agent for the crystallization of PBT, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites, even if the existence of ATT could restrict the segmental motion of PBT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2112–2121, 2006 相似文献
8.
The advanced isoconversional method can be used to determine effective activation energies of the nonisothermal crystallization of polymer melts. The application of this method to differential scanning calorimetric data on the crystallization of poly(ethylene terephthalate) yields an activation energy that increases with the extent of crystallization from –270 to 20 kJ·mol–1. The variation is interpreted in terms of accepted crystallization models. 相似文献
9.
Andreas Frank Katharina Bruckmoser Anita Redhead Dieter P. Gruber Gerald Pinter 《Macromolecular Symposia》2012,311(1):103-111
Summary: A fracture surface investigation was conducted to study the applicability of cracked round bar (CRB) specimens for an accelerated extrapolation concept for a lifetime assessment of polyethylene (PE) pipes. Scanning electron microscopy and topography metrology with InfiniteFocus were used to study the slow crack growth behavior in CRB specimens at different loading conditions. The results confirm the compliance of the CRB test with the requirements of linear elastic fracture mechanics. 相似文献
10.
DSC measurements carried out at different heating rates were used for the kinetic analysis of the endothermic process assigned to the denaturation of the helical material from human hair in water excess. We found that the kinetic mechanism is autocatalytic and that the value of the activation energy is close to disulphide bond scission rather than to protein denaturation. This allowed us to propose a multistep mechanism for the thermal denaturation of hard α‐keratins in water excess that relies on the 3‐phase model which describes their structure. The limiting step of the thermal denaturation process is then the scission of S–S bonds between the main morphological components, namely IF and matrix (IFAP). The theoretical proposed model shows a good agreement with the experimental recorded data.
11.
Dimitris S. Achilias George Z. Papageorgiou George P. Karayannidis 《Journal of Polymer Science.Polymer Physics》2004,42(20):3775-3796
The kinetics of crystallization of poly(propylene terephthalate) (PPT) samples of different molecular weights were studied under both isothermal and nonisothermal conditions. The Avrami and Lauritzen–Hoffmann treatments were applied to evaluate kinetic parameters of PPT isothermal crystallization. It was found that crystallization is faster for low‐molecular‐weight samples. The modified Avrami equation, and the combined Avrami–Ozawa method were found to successfully describe the nonisothermal crystallization process. Also, the analysis of Lauritzen–Hoffmmann was tested and it resulted in values close to those obtained with isothermal crystallization data. The nonisothermal kinetic data were corrected for the effect of the temperature lag and shifted alone with the isothermal kinetic data to obtain a single master curve, according to the method of Chan and Isayev, testifying to the consistency between the isothermal and corrected nonisothermal data. A new method for ranking of polymers, referring to the crystallization rates, was also introduced. This involved a new index that combines the maximum crystallization rate observed during cooling with the average crystallization rates over the temperature range of the crystallization peak. Furthermore, the effective energy barrier of the dynamic process was evaluated with the isoconversional methods of Flynn and Friedmann. It was found that the energy barrier is lower for the low‐molecular‐weight PPT. The effect of the catalyst remnants on the crystallization kinetics was also investigated and it was found that this is significant only for low‐molecular‐weight samples. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3775–3796, 2004 相似文献
12.
Stanislav Ratner Amotz Weinberg Ellen Wachtel P. Mona Moret Gad Marom 《Macromolecular rapid communications》2004,25(12):1150-1154
Summary: The temperature dependence of the structure of either cross‐linked or non‐cross‐linked ultra‐high‐molecular‐weight polyethylene (UHMWPE) fiber compacts was studied by synchrotron microbeam wide‐angle X‐ray scattering (WAXS), focusing on the fiber‐fiber interface. The phase transition sequence is: melting of the monoclinic phase in the fiber skin, which was completed by 135 °C; melting of the unconstrained orthorhombic phase, by 152 °C; melting of the constrained orthorhombic phase and a orthorhombic‐hexagonal phase transition until 157 °C; and gradual melting of the hexagonal phase, up to 165 °C. Cross‐linking provides additional thermal stabilization.
13.
Cecilia D. Treviño‐Quintanilla Ramanan Krishnamoorti Jaime Bonilla‐Ríos 《Journal of Polymer Science.Polymer Physics》2017,55(24):1822-1827
Non‐isothermal ultra‐fast cooling crystallization tests were conducted on three blown film grade bimodal high density polyethylene (HDPE) resins using a fast differential scanning calorimeter, the Flash DSC. Non‐isothermal tests were performed at cooling rates between 50 and 4000°K/s, and the data were analyzed using the modified Avrami model by Jeziorny (Polymer, 1978 , 19, 1142). Non‐isothermal data were used to propose a new method named crystallization–time–temperature–superposition, and the two activation energies were obtained for each of the resins. This is very useful for obtaining theoretical crystallization kinetics data at different cooling rates, allowing its use in ultra‐fast cooling polymer processes such as blown film. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1822–1827 相似文献
14.
J. Weng R. H. Olley D. C. Bassett P. Jskelinen 《Journal of Polymer Science.Polymer Physics》2004,42(18):3318-3332
Of the three melting peaks typical of a propylene–ethylene random copolymer (with 5.1 wt % ethylene) crystallized between 110 and 140 °C, the two higher peaks result from primary and secondary isothermal crystallization, whereas the material crystallized on cooling gives the lowest peak. In contrast to polypropylene homopolymers, which show strong morphological changes developing from the center of a spherulite, copolymer specimens are uniformly crosshatched. The highest melting peak is related to an open crosshatched framework of primary lamellae, and the next lower peak is related to later forming subsidiary lamellae filling the intervening space. The origin and nature of these double peaks are discussed in terms of the fractional crystallization and the ensuing constraints placed on isothermal lamellar thickening as a result of the exclusion of the comonomer from the polypropylene lattice. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3318–3332, 2004 相似文献
15.
Weimin Yang Jianzhong Fu Lih‐Sheng Turng 《Journal of Polymer Science.Polymer Physics》2015,53(10):700-708
Crystallization has significant effects on the physical and mechanical properties of polymer products; therefore, crystallization measurements are important for understanding and predicting polymer products' properties. However, traditional crystallization measurement methods have disadvantages in practical applications because they can be destructive, offline, unsafe, and expensive. Recently, ultrasonic technology has shown great potential as a nondestructive, online, real‐time, and environmentally friendly measurement method for polymer characterization. In this study, a novel measurement method based on ultrasonic technology was proposed to study the crystallization characteristics of poly(lactic acid) (PLA) parts. An annealing process was employed to produce PLA parts with different degrees of crystallinity. A new ultrasonic water immersion method was used to measure the ultrasonic velocities of these annealed PLA parts. It has been found that the plot of the inverse ultrasonic velocity versus the degree of crystallinity shows good linearity over the whole crystallinity range for all three annealing temperatures. The linear relationship between the inverse of the ultrasonic velocity and the crystallinity observed in this study could provide a nondestructive method for investigating the degree of crystallinity of polymers, which can be implemented both offline and online. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 700–708 相似文献
16.
Christian Tischler Thomas R. Kratochvilla Heinz Muschik Heinz Dragaun 《Macromolecular Symposia》2010,296(1):626-631
It is known, that the lifetime of polyethylene pipes is essentially limited by slow crack growth (SCG). For state of the art PE materials common SCG testing methods have reached their limits with respect to extension of testing times. A comparatively new method is the Notched Ring Test (NRT) as developed by Choi et al.[1] Pipe rings notched at the inner wall are used. The test is carried out in 80 °C water under constant bending load. The arrangement of the notch at the inner wall reduces testing times using the residual stress of extruded pipes. A disadvantage of this method is that there is no clearly defined failure time because SCG takes place between two phases of creeping. The output of this test is an “on-set slow cracking time” (crack initiation), obtained by analysis of the displacement curve. In this work it has been shown that the NRT method yields to brittle fracture within acceptable time frames.[2] Methods for data analysis are presented. This test could be very useful applied in research and development for resin evaluation and as a tool in quality control in pipe production for evaluating the process conditions. 相似文献
17.
Jun‐Ting Xu Yan‐Qin Zhao Qi Wang Zhi‐Qiang Fan 《Macromolecular rapid communications》2005,26(8):620-625
Summary: Exfoliated and intercalated polyethylene/montmorillonite (PE/MMT) nanocomposites with high MMT content were prepared by in situ polymerization. The isothermal crystallization kinetics of the nanocomposites were analyzed with Lauritzen–Hoffman regime theory. Regime III crystallization, which is difficult to observe in linear polyethylene, appears in the PE/MMT nanocomposites. The broader temperature range of regime III crystallization in PE/MMT nanocomposites shows that the mobility and reptation ability of the PE chains are greatly reduced by the MMT, especially in the intercalated nanocomposite.
18.
Summary: Molecular weight and short chain branching (SCB) data experimentally obtained by SEC-FTIR are combined into a single, primary structural parameter (PSP2) and used to rapidly screen the slow crack growth resistance of a variety of polyethylene resins. Our results show that PSP2 values obtained for resins made using different catalysts (both dual and single catalyst systems) and hence, different polymer architectures, correlate well with results obtained from several short-term tensile tests. The development of PSP2, as well as the qualitative and quantitative predictive ability of this parameter are presented and discussed. 相似文献
19.
C. Piel P. Starck J. V. Seppl W. Kaminsky 《Journal of polymer science. Part A, Polymer chemistry》2006,44(5):1600-1612
Copolymers of ethene and 1‐octene, 1‐dodecene, 1‐octadecene, and 1‐hexacosene were carried out with [Ph2C(2,7‐di‐tertBuFlu)(Cp)]ZrCl2/methylalumoxane as a catalyst to obtain short‐chain branched polyethylenes with branch lengths of 6–26 carbon atoms. This catalyst provided high activity and a very good comonomer and hydrogen response. In this study, the influence of the length and number of the side chains on the mechanical properties of the materials was investigated. The crystalline methylene sequence lengths of the copolymers and lamellar thicknesses were calculated after the application of a differential scanning calorimetry/successive self‐annealing separation technique. By dynamic mechanical analysis, the storage modulus as an indicator of the stiffness and the loss modulus as a measure of the effect of branching on the α and β relaxations were studied. The results were related to the measurements of the polymer density and tensile strength to determine the effect of longer side chains on the material properties. The hexacosene copolymers had side chains of 24 carbons and remarkable material properties very different from those of conventional linear low‐density polyethylenes. The side chains of these copolymers crystallized with one another and not only parallel to the backbone lamellar layer, depending on the hexacosene concentration in the copolymer. The side chains crystallized even at low hexacosene concentrations in the copolymer. A transfer of these results to 16 carbons side chains in ethene–octadecene copolymers was also possible. © 2006 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1600–1612, 2006 相似文献
20.
José C. Machado Glaura G. Silva Fernando C. de Oliveira Rodrigo L. Lavall Jacques Rieumont Pedro Licinio Dario Windmöller 《Journal of Polymer Science.Polymer Physics》2007,45(17):2400-2409
Positron annihilation lifetime spectroscopy (PALS), differential scanning calorimetry, X‐ray diffraction, and polarized light optical microscopy were used to study six low molar mass poly(ethylene oxide) samples with average molar masses ranging from 1 × 103 to 10 × 103 g mol?1. Dynamic light scattering was used to determine molar mass and polydispersity rigorously. Polymer samples with 70–95% crystallinity, which is an unusual range in PALS studies, were prepared by molten material quenching. The ortho‐positronium pick‐off lifetime (τ3) and relative fractional free volume (fv), determined by the free volume model, correlated well with the average molar mass and crystallinity of the polymers. X‐ray diffraction and polarized light optical data support the interpretation of positron annihilation results. PALS parameter, I3, which is associated with high cavity content, remained approximately constant at 20–22% for all samples. The cavities are present as crystallite defects in the spherulitic open texture and the amorphous phase for the low crystallinity sample (e.g., for Mw = 1390) and at the interfaces and in interlamellar spherulite regions of the more crystalline materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2400–2409, 2007 相似文献