首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystal needles of N,N′-bis(1-ethylpropyl)-3,4,9,10-perylenebis(dicarboximide) (EPPTC) are produced through p-stacking and are embedded in the thin film of poly(9,9-din-hexylfluorenyl-2,7-diyl) (PFO) when the blend solution of EPPTC and PFO in p-xylene is spin-coated onto a glass substrate. Charge transfer (CT) complex is resolved from the spectroscopic response of the blend film, which is generated only when the PFO molecules are excited. Thus, the PFO molecules are specified as donors and the H-aggregated EPPTC as acceptors in the formation of CT state (CTS). The emission resulting from the CTS in the red is further recognized by its much longer lifetime than both the intrinsic emission of the individual EPPTC molecules and that of their pure aggregates. Near-field analysis verifies that the CTS form on the boundary between the PFO and the crystal phases. The CT exciton forms by bounding the hole left on HOMO of the donor (PFO) and the indirectly transferred electron to the H-aggregate state of EPPTC, which transits back to the ground state by emitting a photon at about 650 nm. This introduces special physics in the heterojunctions that are coupled with the H-aggregates and mechanisms important for the design of organic photovoltaic devices. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

2.
Electronic charge density distribution in molecular systems has been described in terms of the topological properties. After briefly reviewing methods of obtaining charge densities from X-ray diffraction and theory, typical case studies are discussed. These studies include rings and cage systems, hydrogen bonded solids, polymorphic solids and molecular NLO materials. It is shown how combined experimental and theoretical investigations of charge densities in molecular crystals can provide useful insights into electronic structure and reactivity.  相似文献   

3.
We investigate the influence of particle plasmons on exciton and charge generation and recombination processes in the blend of poly (9‐(1‐octylnonyl)‐9H‐carbazole‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl) (PCDTBT) and [6,6]‐phenyl‐C70butyric acid methyl ester (PC70BM). The particle plasmons are generated from gold nanoparticles, which are embedded into PCDTBT:PC70BM blend. For the blend with gold nanoparticles, we observe enhance light harvesting. Despite the enhanced light collection, we find that the quasi‐steady‐state charge generation has not been influenced by the particle plasmons. However, the generation and recombination of long‐lived (sub‐millisecond) polaron paris have been significantly enhanced: from untrapped state in the pristine blend to the trapped state in the gold nanoparticle‐embedded blend. This result implies that the plasmon‐influenced polarons are trapped at the broadband geminate polaron pair (GPP) state. This state acts as an intermediate state, which either leads to the formation of charge transfer excitons (CTXs) or free charge carriers. In our case, the particle plasmon‐influenced polarons are trapped in the GPP state, which leads to the formation of CTXs. For this reason, we do not observe the enhanced charge generation in PCDTBT:PC70BM blend with particle plasmon resonance. Finally, we revealed that the long‐lived polarons mainly resulted from the localization by particle plasmons. The macroscopic modification in the blend film made negligible contributions to this influence. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 940–947  相似文献   

4.
Electrochemical polymerization in a cholesteric liquid‐crystal electrolyte was carried out. Polypyrrole thus synthesized in a cholesteric liquid‐crystal electrolyte could be clearly seen to form a specific morphology. The polypyrrole films exhibited chiroptical properties and formed various surface structures such as Schlieren, Nazca‐line, sea‐anemone, and wire‐loop structures. These structures that developed during polymerization were preserved even after washing. Moreover, no chiral molecule reacted chemically with the monomer during polymerization, and the electrolyte functioned only as a matrix chiral continuum. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1377–1387, 2007.  相似文献   

5.
Calculations for the acetanilide crystal yield the effective polarizability (16.6 A(3)), local electric field tensor, effective dipole moment (5.41 D), and dipole-dipole energy (-12.8 kJ/mol). Fourier-transform techniques are used to calculate the polarization energy P for a single charge in the perfect crystal (-1.16 eV); the charge-dipole energy W(D) is zero if the crystal carries no bulk dipole moment. Polarization energies for charge-transfer (CT) pairs combine with the Coulomb energy E(C) to give the screened Coulomb energy E(scr); screening is nearly isotropic, with E(scr) approximately E(C)/2.7. For CT pairs W(D) reduces to a term deltaW(D) arising from the interaction of the charge on each ion with the change in dipole moment on the other ion relative to the neutral molecule. The dipole moments calculated by density-functional theory methods with the B3LYP functional at the 6-311++G(**) level are 3.62 D for the neutral molecule, changing to 7.13 D and 4.38 D for the anion and cation, relative to the center of mass. Because of the large change in the anion, deltaW(D) reaches -0.9 eV and modifies the sequence of CT energies markedly from that of E(scr), giving the lowest two CT pairs at -1.98 eV and -1.41 eV. The changes in P and W(D) near a vacancy are calculated; W(D) changes for the individual charges because the vacancy removes a dipole moment and modifies the crystal dielectric response, but deltaW(D) and E(C) do not change. A vacancy yields a positive change DeltaP that scatters a charge or CT pair, but the change DeltaW(D) can be negative and large enough to outweigh DeltaP, yielding traps with depths that can exceed 150 meV for single charges and for CT pairs. Divacancies yield traps with depths nearly equal to the sum of those produced by the separate vacancies and so they can exceed 300 meV. These results are consistent with a mechanism of optical damage in which vacancies trap optically generated CT pairs that recombine and release energy; this can disrupt the lattice around the vacancy, thereby favoring trapping and recombination of CT pairs generated by subsequent photon absorption, leading to further lattice disruption. Revisions to previous calculations on trapping of CT pairs in anthracene are reported.  相似文献   

6.
The morphology of donor-acceptor heterojunction interface significantly affects the electron/hole processes in organic solar cells, including charge transfer (CT), exciton dissociation (ED), and charge recombination (CR). Here, to investigate interface molecular configuration effects, the donor-acceptor complexes with face-on, edge-on, and end-on configurations were constructed as model systems for the p-SIDT(FBTTh2)2/C60 heterojunction. The geometries, electronic structures, and excitation properties of monomers and the complexes with three configurations were studied based on density functional theory (DFT) and time-dependent DFT calculations with optimally tuned range separation parameters and solid polarization effects. In terms of Marcus theory, the rate constants of ED and CR processes were analyzed. The results show that most of the excited states for p-SIDT(FBTTh2)2 exhibit an intramolecular CT character, and the similarity of the excitation characters (CT and local excitation) and energies among three complexes with different configurations indicate that the electronic structure and excitation properties are insensitive to the interfacial molecular configurations. However, the rates of ED and CR processes heavily depend on it. These results underline the importance of controlling molecular configuration and then the morphology at the heterojunction interface in organic solar cells.  相似文献   

7.
We have investigated the relationship between the molecular configuration and dipole moment of some fluorinated liquid crystals (LCs). The geometries of the molecules were preliminarily optimized at empirical AM1 and then were further optimized at B3LYP/6‐31G(d) level. The dipole moment has been calculated. It is strongly influenced by the position and number of fluorine substituents in the benzene ring of the molecule. The polarizability, mean polarizabilities, and anisotropic polarizability of the phenylbicyclohexane (PBC) fluorine substituents are also given and discussed. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

8.
《Mendeleev Communications》2023,33(3):353-356
It is shown that the electronic virial-based correlation should be used to estimate bonding contributions to the rigidity of molecular vibrations in crystals.  相似文献   

9.
Fluorescence of several new polyimides in which neighboring imides are linked by a N-N bond was examined in chloroform solutions. For the naphthalene-containing polyimide 1 , analysis of the emission, excitation, and absorption spectra at different concentrations showed the existence of a ground-state intermolecular charge transfer (CT) complex due to chain association and aggregation. For the perylene-containing polyimides 3-6 , the fluorescence was characterized by a low energy band superimposed on the normal perylenediimide bands. This was interpreted as arising from a CT interaction between electron donor-acceptor pairs on the polymers backbone of the same chain, revealing certain degrees of chain coiling of these polymers in solution. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
A self-consistent calculation of electronic polarization in organic molecular crystals and thin films is presented in terms of charge redistribution in nonoverlapping molecules in a lattice. The polarization energies P+ and P of a molecular cation and anion are found for anthracene and perelynetetracarboxylic dianhydride (PTCDA), together with binding energies of ion pairs and transport gaps of PTCDA films on metallic substrates. The 500 meV variation of P++P with film thickness agrees with experiment, as do calculated dielectric tensors. Comparisons are made to submolecular calculations in crystals.  相似文献   

11.
A custom code for molecular dynamics simulations has been designed to run on CUDA‐enabled NVIDIA graphics processing units (GPUs). The double‐precision code simulates multicomponent fluids, with intramolecular and intermolecular forces, coarse‐grained and atomistic models, holonomic constraints, Nosé–Hoover thermostats, and the generation of distribution functions. Algorithms to compute Lennard‐Jones and Gay‐Berne interactions, and the electrostatic force using Ewald summations, are discussed. A neighbor list is introduced to improve scaling with respect to system size. Three test systems are examined: SPC/E water; an n‐hexane/2‐propanol mixture; and a liquid crystal mesogen, 2‐(4‐butyloxyphenyl)‐5‐octyloxypyrimidine. Code performance is analyzed for each system. With one GPU, a 33–119 fold increase in performance is achieved compared with the serial code while the use of two GPUs leads to a 69–287 fold improvement and three GPUs yield a 101–377 fold speedup. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Charge transfer (CT) interaction between 5-amino-2-methoxypyridine (5AMPy), as electron donor (proton acceptor), with 3,6-dichloro-2,5-dihydroxy-p-benzoquinone (chloranilic acid, H2CA), as electron acceptor (proton donor), has been investigated spectrophotometrically in the polar protic solvents ethanol (EtOH) and methanol (MeOH) and the aprotic one acetonitrile (AN). Pink-coloured solution is formed instantaneously upon mixing 5AMPy with H2CA solutions in all solvents, which is the hallmark evidence of CT complex formation. Based on Job’s method of continuous variations, as well as spectrophotometric titrations, the stoichiometry of the complex was found to be 1:1 [(5AMPy) (H2CA)] in all solvents. Benesi–Hildebrand equation has been applied to estimate the formation constant of the produced CT complex (KCT) and its molar absorptivity (ε), they reached high values, confirming the complex high stability. Solid CT complex has been synthesised and analysed by elemental analyses and FTIR, 1H NMR spectroscopies, where 2:1 [(5AMPy)2 (H2CA)] CT complex was obtained.  相似文献   

13.
Fluoride compounds have compelling advantages for many optical applications due to their unique combination of low phonon energy, high UV absorption edge energy, and relatively weak crystal field. In this article, we offer a concise review of the current state of the art in fluoride single crystals, ceramics, glasses, and glass–ceramics for optical applications.  相似文献   

14.
A new conduction mechanism in polyethylene and epoxy resin is presented and discussed in this article. This mechanism is based on the presence of charge pulses that can be seen as solitons (solitary waves) crossing dielectrics with mobility 4–5 orders of magnitude larger than that of conventional charge carriers. The nature of this new process that is characterized by charge pulses with such high mobility requires a completely different mechanism for transport to be theorized with respect to that, mediated by trap sites, of conventional charge carriers. It is speculated in this article that injection and transport of positive and negative solitons occurs through the coupling of space charge and relaxation processes involving molecular chains, but of different nature for negative or positive solitons. Observation of space charge shows the existence of such solitons for at least two families of materials, polyethylene, and epoxy resin. In addition, it has been observed that nanostructuration, which is able to modify mechanical properties, affects also the presence and size of the solitons. In this article, we not only seek to demonstrate the existence of this new phenomenon, but attempt to provide an explanation and a kind of qualitative–quantitative model, which shows that the assumption of a pulsive conduction mechanism mediated by chain relaxation processes, transport in free volume (for negative solitons), and reverse‐tunneling between macromolecular chains (positive solitons) seems to fit quite well with the experimental observations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

15.
The excitonic effects of biphenyl and 2,2′-bithiophene are investigated within an ab initio framework. For this purpose the Bethe–Salpeter equation for the two-particle Greens function is solved. Therefrom the imaginary part of the dielectric function is derived, which includes the electron–hole interaction in the absorption process. It turns out that these organic molecular crystals, which are built by small molecules, give rise to sizeable exciton binding-energies, which are between 0.7 and 0.8 eV. To study the influence of the intermolecular interaction, the exciton binding energy of crystalline biphenyl is calculated as a function of pressure. The decrease of both, the band gap and the exciton binding energy, results in a slight red-shift of the lowest optically active singlet exciton.  相似文献   

16.
We revisit basic theoretical concepts of local and itinerant vibronic polarons in crystals. The following results may be regarded as novel: (1) The electron self‐trapping rate to a small polaron is calculated via the reaction rate method; subsequently, self‐trapped on‐center small polarons relax to an off‐center vibronic polaron state. (2) The general vibronic Hamiltonian is redefined so as to incorporate both local and itinerant behavior and pairing into bipolarons or Cooper pairs. (3) The planar rotation and diametral tunneling of an off‐center polaron around and across its centrosymmetrical site are dealt with to adiabatic approximation. (4) Variational calculations are made for vibronic polarons itinerant along 1‐D chains by means of a two‐band extension of Merrifield's ansatz. This investigation of vibronic polarons is undertaken in view of their presumed role in high‐temperature superconductivity and colossal magnetoresistance. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

17.
18.
Fluorescence polarization and quenching measurements were used to examine intramolecular energy migration for poly(N‐vinyl carbazole) and copolymers of N‐vinyl carbazole with methyl methacrylate. Quenching measurements of the carbazole fluorescence by CCl4 were performed in dilute solution in toluene, and fluorescence anisotropy, r, was measured for the chains dispersed in a solid matrix of poly(methyl methacrylate) (PMMA). The results suggested that the chains with a high carbazole content, that is, a high content of excimer trapping sites, do not show the highest values of the singlet energy‐migration rate. Isotropies, r?1, of the samples in vitrified PMMA corroborated such conclusions. Molecular dynamics simulations on isotactic and syndiotactic trichromophoric copolymer fragments were used to obtain parameters related to the energy‐transfer process as a function of the methyl methacrylate content. The parameters from the simulations supported the interpretation of the experiments. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1615–1626, 2003  相似文献   

19.
Porphyrin and M-Porphyrin (M = Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) complexes were designed to examine their organic light-emitting diode (OLED) properties. All calculations were performed in different media, which are gas, benzene, DMSO, and water phases. The calculations of both porphyrin and its metal complexes as a monomer form were performed at B3LYP/6-31G(d) level by using the Gaussian 16 and GaussView 6 package programs. On the other hand, emission calculations for the monomer form and dimer form computations of the studied compounds were carried out at PBE0/TZP and B3LYP/TZP levels, respectively, by using Amsterdam density functional (ADF) 2019 package program. The OLED tensors of the mentioned molecules, which are emission energies, reorganization energies (λe and λh), the ionization potentials and the electron affinities (adiabatic and vertical), the effective transfer integrals (Ve and Vh), and the charge transfer rates (We and Wh), were calculated to evaluate the OLED behaviors and determine the best OLED structure.  相似文献   

20.
Electronic origin for nonresonant enhancement of nonlinear optical response in the complexes formed from tetraalkylammonium halide and carbon tetrabromide is provided in view of electrostatic potentials of intermolecular donor (halide ion)-acceptor (CBr(4)). The calculated electrostatic potentials of donor-acceptor range from -4.83 to -7.70 kcal mol(-1) and show a decreasing order of [Et(4)Cl(-)Br] > [Et(4)Br(-)Br] congruent with [Et(4)I(-)Br] > [Bu(4)Br(-)Br]. The calculated second-order susceptibilities of solid complexes are in an increasing order of [NEt(4)ClCBr(4)] < [NEt(4)BrCBr(4)] congruent with [NEt(4)ICBr(4)] < [NBu(4)BrCBr(4)C(3)H(6)O]. It has been shown that the donor/acceptor dyads make the exclusive contribution to nonlinear optical response. A large size of halide or tetraalkylammonium ion results in a small electrostatic potential and large nonlinear optical response in these charge-transfer complexes. It indicates that a small supermolecular interaction will create a large nonlinear optical response, and it gives a clue to design the molecular complexes with large non-linear optical susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号