首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
脯氨酸类衍生物结构独特,鲜有报道利用核磁共振(nuclear magnetic resonance,NMR)技术对氨基酸的手性进行鉴别.利用多种NMR技术:1H NMR、1H-1H同核位移相关谱(1H-1H COSY)、1H-1H质子全相关谱(1H-1H TOCSY)、1H-1H核Overhauser效应谱(1H-1H NOESY)、13C NMR、无畸变的极化转移增强法(DEPT135°)、1H-13C检出1H的异核单量子相干(1H-13C HSQC)和1H-13C检出1H的异核多键相关(1H-13C HMBC),对脯氨酸类N-酰胺衍生物两种构象异构体的1H和13C NMR进行了全归属,确定了室温下在二甲基亚砜(DMSO)中L型和D型的顺反异构体以相同的比例同时存在.  相似文献   

2.
The 1D- and 2D-6Li, 6Li-INADEQUATE experiments are described as new tools for the detection of scalar coupled nonequivalent 6Li nuclei in organolithium clusters. Practical applications of these sequences are demonstrated for the 6Li-NMR spectra of (E)-1-lithio-2-(2-lithiophenyl)-1-phenylhex-1-ene ( 1 ) and (E)-2-lithio-1-(2-lithiophenyl)-1-phenylpent-1-ene ( 2 ), where signals due to dimers and monomers can be distinguished. The performance of the 2D-6Li, 6Li-INADEQUATE and the 6Li, 6Li-COSY-45-LR experiment are compared. The 6Li chemical shifts of 1 and 2 are discussed.  相似文献   

3.
Synthesis and Spectroscopical Characterization of Di(halo)phthalocyaninato(1–)rhodium(III), [RhX2Pc1?] (X = Cl, Br, I) Bronze-coloured di(halo)phthalocyaninato(1–)-rhodium(III), [RhX2Pc1?] (X = Cl, Br) and [RhI2Pc1?] · I2 is prepared by oxidation of (nBu4N)[RhX2Pc2?] with the corresponding halogene. Irrespective of the halo ligands, two irreversible electrode reactions due to the first ringreduction (ER = ?0,90 V) and ringoxidation (EO = 0,82 V) are present in the cyclovoltammogram of (nBu4N)[RhX2Pc2?]. The optical spectra show typical absorptions of the Pc1?-ligand at 14.0 kK and 19.1 kK. Characteristic vibrational bands are at 1 366/1 449 cm?1 (i. r.) and 569/1 132/1 180/1 600 cm?1 (resonance Raman (r. r.)). The antisym. (Rh? X)-stretching vibration is observed at 294 cm?1 (X = Cl), 240 cm?4 (Br) and 200 cm?1 (I). Only the sym. (Rh? I)-stretching vibration at 133 cm?1 is r. r. enhanced together with a strong line at 170 cm?1, which is assigned to the (I? I)-stretching vibration of the incorporated iodine molecule. Both modes show overtones and combinationbands.  相似文献   

4.
《Analytical letters》2012,45(13-14):2813-2834
Abstract

Spectrophotometric procedure is described for the quantitative determination of diphenadione [2-(diphenylacetyl)-1,3-indandione], based on direct spectrophotometric measurements of the absorbances of its iron (III), iron (II) and cobalt (II), metal complexes at 488 nm, 505 nm and (334 nm, 372 nm), respectively. The drug reacts with metals in the ratio of 3:1 and 2:1 for iron (III) and for both iron (II) and cobalt (II) respectively. The obtained complexes have apparent molar absorptivities of 1.48 × 103 1 mol?1 cm?1, 0.714 × 103 1 mol?1cm?1 and (1.70 × 103 1 mol?1cm?1, 1.93 × 103 1 mol?1cm?1) for iron (III), iron (II) and cobalt (II) complexes, respectively. The procedure is suggested for the determination of 51–400 μg.ml?1 diphenadione via the iron (II) complex and 35–170 μg.ml?1 diphenadione via both cobalt (II) and iron (III) complexes. The suggested procedure has accuracies of 99.79 ± 0.67%, 99.64 ± 0.37% and (100.09 ± 0.53%, 99.99 ± 0.42%) for the metal complexes of iron (III), iron (II) and cobalt (II), respectively.  相似文献   

5.
In the wavelength range of 231-275 nm, we have studied the mass-resolved dissociation spectra of OCS+ via B2+←X23/2(000) and B2+←X21/2(000, 001) transitions by preparing OCS+ ions in the well-defined spin-orbit states. The spectroscopic constants ofυ1(CS stretch)=828.9 (810.4) cm-1, υ2(bend)=491.3 cm-1 and υ3(CO stretch)=1887.2 cm-1 for OCS+(B2+) are deduced. The observed dependence of the υ2(bend) mode excitation of B2+ on the spin-orbit splitting of X2∏(Ω=1/2, 3/2) in the B2+←X2∏ transition can be attributed to the K coupling between the (000)21/2 and (010)2+1/2 vibronic levels of X2∏ state, which makes the B2+(010)←X21/2(000) transition possible.  相似文献   

6.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

7.
At various levels of theory, singlet and triplet potential energy surfaces (PESs) of Si2CO, which has been studied using matrix isolation infrared spectroscopy, are investigated in detail. A total of 30 isomers and 38 interconversion transition states are obtained at the B3LYP/6‐311G(d) level. At the higher CCSD(T)/6‐311+G(2d)//QCISD/6‐311G(2d)+ZPVE level, the global minimum 11 (0.0 kcal/mol) corresponds to a three‐membered ring singlet O‐cCSiSi (1A′). On the singlet PES, the species 12 (0.2 kcal/mol) is a bent SiCSiO structure with a 1A′ electronic state, followed by a three‐membered ring isomer Si‐cCSiO (1A′) 13 (23.1 kcal/mol) and a linear SiCOSi 14 (1Σ+) (38.6 kcal/mol). The isomers 11, 12, 13 , and 14 possess not only high thermodynamic stabilities, but also high kinetic stabilities. On the triplet PES, two isomers 31 (3B2) (18.8 kcal/mol) and 37 (3A″) (23.3 kcal/mol) also have high thermodynamic and kinetic stabilities. The bonding natures of the relevant species are analyzed. The similarities and differences between C3O, C3S, SiC2O, and SiC2S are discussed. The present results are also expected to be useful for understanding the initial growing step of the CO‐doped Si vaporization processes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

8.
Equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have been performed to determine coupling constants 1J(X–Y) for 65 molecules HmX–YHn, with X,Y ═ 1H, 7Li, 9Be, 11B, 13C, 15N, 17O, 19F, 31P, 33S, and 35Cl. The computed 1J(X–Y) values are in good agreement with available experimental data. The reduced coupling constants 1K(X–Y) have been derived from 1J(X–Y) by removing the dependence on the magnetogyric ratios of X and Y. Patterns are found for the reduced coupling constants on a 1K(X–Y) surface that are related to the positions of X and Y in the periodic table.  相似文献   

9.
The synthesis, characteristics and analytical reactions of di-2-pyridyl ketone thiosemicarbazone are described. This compound reacts with iron(II) (λmax=410mm, ε = 9.3 · 103 1 mol?1 cm?1), nickel(II) (λmax =395 mm ε =19.6·103 10 mol ?1 cm -1), cobalt(II) (λmax = 415 nm. ε = 1.0 · 104 mol?1 cm?1 ) and copper(I) (λmax =395mm ε = 11.3 · 103 mol?1 cm?1) A critical comparison of di-2-pyridyl ketone, picolinaldehyde and bipyridylglyoxal thiosemicarbazones as analytical reagents is given.  相似文献   

10.
The reaction of mercury(II) with 3-(2,4-dihydroxyphen-1-ylazo)-1,2,4-triazole (HL1), 3-(2-hydroxy-5-methylphen-1-ylazo)-1,2,4-triazole (HL2), 3-(2-hydroxy-5-ethoxycarbonylphen-1-ylazo)-1,2,4-triazole (HL3), 3-(2-hydroxy-5-acetylphen-1-ylazo)-1,2,4-triazole (HL4), 3-(2-hydroxy-5-formylphen-1-ylazo)-1,2,4-triazole (HL5), and 3-(2-hydroxy-5-bromophen-1-ylazo)-1,2,4-triazole (HL6) was studied. A new, direct, and simple procedure was suggested for the spectrophotometric determination of mercury(II) based on its complexation reaction with HL1-HL6. The best reagent was found to be HL3 due to its high sensitivity and selectivity. In aqueous media of pH 9.0 containing 40 vol. % of methanol, Hg(II) reacts with HL3 to form a 1:2 (Hg(II) · HL3) complex having a sensitive absorption peak at 490 nm with the molar extinction coefficient of 3.31 × 104 L mol−1 cm−1 using 4 × 10−4 M of the reagent. Beer’s law is obeyed over the range from 0.00 μg mL−1 to 12.04 μg mL−1 of mercury(II). The proposed method was applied in the determination of mercury(II) in tap water, seawater and synthetic seawater samples, without the need of prior treatment, with satisfactory results.  相似文献   

11.
Guanine radicals are important reactive intermediates in DNA damage. Hydroxyl radical (HO.) has long been believed to react with 2′-deoxyguanosine (dG) generating 2′-deoxyguanosin-N1-yl radical (dG(N1-H).) via addition to the nucleobase π-system and subsequent dehydration. This basic tenet was challenged by an alternative mechanism, in which the major reaction of HO. with dG was proposed to involve hydrogen atom abstraction from the N2-amine. The 2′-deoxyguanosin-N2-yl radical (dG(N2-H).) formed was proposed to rapidly tautomerize to dG(N1-H).. We report the first independent generation of dG(N2-H). in high yield via photolysis of 1 . dG(N2-H). is directly observed upon nanosecond laser flash photolysis (LFP) of 1 . The absorption spectrum of dG(N2-H). is corroborated by DFT studies, and anti- and syn-dG(N2-H). are resolved for the first time. The LFP experiments showed no evidence for tautomerization of dG(N2-H). to dG(N1-H). within hundreds of microseconds. This observation suggests that the generation of dG(N1-H). via dG(N2-H). following hydrogen atom abstraction from dG is unlikely to be a major pathway when HO. reacts with dG.  相似文献   

12.
The reactivity of white phosphorus and yellow arsenic towards two different nickel nacnac complexes is investigated. The nickel complexes [(L1Ni)2tol] ( 1 , L1=[{N(C6H3iPr2-2,6)C(Me)}2CH]) and [K2][(L1Ni)2(μ,η1 : 1-N2)] ( 6 ) were reacted with P4, As4 and the interpnictogen compound AsP3, respectively, yielding the homobimetallic complexes [(L1Ni)2(μ-η2121-E4)] (E=P ( 2 a ), As ( 2 b ), AsP3 ( 2 c )), [(L1Ni)2(μ,η3 : 3-E3)] (E=P ( 3 a ), As ( 3 b )) and [K@18-c-6(thf)2][L1Ni(η1 : 1-E4)] (E=P ( 7 a ), As ( 7 b )), respectively. Heating of 2 a , 2 b or 2 c also leads to the formation of 3 a or 3 b . Furthermore, the reactivity of these compounds towards reduction agents was investigated, leading to [K2][(L1Ni)2(μ,η2 : 2-P4)] ( 4 ) and [K@18-c-6(thf)3][(L1Ni)2(μ,η3 : 3-E3)] (E=P ( 5 a ), As ( 5 b )), respectively. Compound 4 shows an unusual planarization of the initial Ni2P4-prism. All products were comprehensively characterized by crystallographic and spectroscopic methods.  相似文献   

13.
Ruthenium(II)-Phthalocyaninates(1–): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato(1–)ruthenium(II) Brown-violet (halo)(carbonyl)phthalocyaninato(1–)ruthenium(II), [Ru(X)(CO)Pc?] (X = Cl, Br) is prepared by oxidation of [Ru(X)(CO)Pc2?]? with the corresponding halogen or dibenzoylperoxide. The eff. magnetic moment μeff = 1.74 (X = Cl), 1.68 μB (Br) confirms the presence of a low-spin RuII complex of the Pc? radical. Accordingly, only the first ring oxidation at ~0.64 V and the first ring reduction at ~ ?1.19 V is observed in the cyclovoltammogram of [Ru(X)(CO)Pc2?]?. The UV-VIS-NIR spectra characterizing a monomeric Pc? radical with intense π-π* transitions at 14500, 19800, 25100 and 33900 cm?1 are compared with those of [Ru(Cl)2Pc?] and of monomeric as well as dimeric [Zn(Cl)Pc?]. The IR and resonance Raman(RR) spectra are characteristic for a Pc? radical, too. Diagnostic in-plane vibrations of the Pc? ligand are in the IR spectrum at 1071, 1359, 1445 cm?1 and in the RR spectrum (λ0 = 488.0 nm) at 567, 1597 cm?1. v(C? O) at 1950 cm?1 and v(Ru? X) at 260 (X = Cl) resp. 184 cm?1 (X = Br) are observed only in the IR spectrum.  相似文献   

14.
Ruthenium(III) Phthalocyanines: Synthesis and Properties of Di(halo)phthalocyaninato(1?)ruthenium(III) Di(halo)phthalocyaninato(1?)ruthenium(III), [Ru(X)2Pc?] (X = Cl, Br, I) is prepared by oxidation of [Ru(X)2Pc2?]? (Cl, Br, OH) with halogene in dichloromethane. The magnetic moment of [Ru(X)2Pc?] is 2,48 μB (X = Cl) resp. 2,56 μB (X = Br) in accordance with a systeme of two independent spins (low spin RuIII and Pc?: S = 1/2). The optical spectra of the red violet solution of [Ru(X)2Pc?] (Cl, Br) are typical for the Pc? ligand with the “B” at 13.5 kK, “Q1” at 19.3 kK and “Q2 region” at 31.9 kK. Sytematic spectral changes within the iron group are discussed. The presence of the Pc? ligand is confirmed by the vibrational spectra, too. Characteristic are the metal dependent bands in the m.i.r. spectra at 1 352 and 1 458 cm?1 and the strong Raman line at 1 600 cm?1. The antisymmetric Ru? X stretch (vas(Ru? X)) is observed at 189 cm?1 (X = I) resp. 234 cm?1 (X = Br). There are two interdependent bands at 295 and 327 cm?1 in the region expected for vas(Ru? Cl) attributed to strong interaction of vas(Ru? Cl) with an out-of-plane Pc? tilting mode of the same irreducible representation. Only the symmetric Ru? Br stretch at 183 cm?1 is selectively enhanced in the resonance-Raman(RR) spectra. The Raman line at 168 cm?1 of the diiodo complex is assigned to loosely bound iodine. The broad band at 978 cm?1 in the RR spectra of the dichloro complex is due to an intraconfigurational transition within the electronic ground state of low spin RuIII split by spin orbit coupling.  相似文献   

15.
The gold sulfonium benzylide complexes [( P1 )AuCHPh(SR1R2)]+ {B[3,5-CF3C6H3]4} [ P1 =P(tBu)2o-biphenyl; R1, R2=-(CH2)4- ( 1 a ); R1=Et, R2=Ph ( 1 b ); R1=R2=Ph ( 1 c )] were synthesized by reaction of the gold α-chloro benzyl complex ( P1 )AuCHClPh with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and excess sulfide. Complexes 1 undergo efficient benzylidene transfer to alkenes and DMSO under mild conditions without external activation. Kinetic analysis of the reaction of 1 c with styrene was consistent with the intermediacy of the cationic gold benzylidene complex [( P1 )AuCHPh]+ ( I ).  相似文献   

16.
The diruthenium(III) compound [(μ‐oxa){Ru(acac)2}2] [ 1 , oxa2?=oxamidato(2?), acac?=2,4‐pentanedionato] exhibits an S=1 ground state with antiferromagnetic spin‐spin coupling (J=?40 cm?1). The molecular structure in the crystal of 1? 2 C7H8 revealed an intramolecular metal–metal distance of 5.433 Å and a notable asymmetry within the bridging ligand. Cyclic voltammetry and spectroelectrochemistry (EPR, UV/Vis/NIR) of the two‐step reduction and of the two‐step oxidation (irreversible second step) produced monocation and monoanion intermediates (Kc=105.9) with broad NIR absorption bands (ε ca. 2000 M ?1 cm?1) and maxima at 1800 ( 1 ?) and 1500 nm ( 1 +). TD‐DFT calculations support a RuIIIRuII formulation for 1 ? with a doublet ground state. The 1 + ion (RuIVRuIII) was calculated with an S=3/2 ground state and the doublet state higher in energy (ΔE=694.6 cm?1). The Mulliken spin density calculations showed little participation of the ligand bridge in the spin accommodation for all paramagnetic species [(μ‐oxa){Ru(acac)2}2]n, n=+1, 0, ?1, and, accordingly, the NIR absorptions were identified as metal‐to‐metal (intervalence) charge transfers. Whereas only one such NIR band was observed for the RuIIIRuII (4d5/4d6) system 1 ?, the RuIVRuIII (4d4/4d5) form 1 + exhibited extended absorbance over the UV/Vis/NIR range.  相似文献   

17.
Summary The sorption of microquantities of Tm(III) ions on washed polyurethane foam (PUF) from a mixture of aqueous solution and ethanol containing PAN was examined. The maximum sorption of 3.18. 10-6M solution of Tm(III) ions was observed at pH 8 with 30-minute equilibration time. The optimum ratio of aqueous-ethanol phase for the sorption of Tm(III) ions was found to be 3:1 v/v, respectively. The sorption rate of metal ions on PUF is followed a first order kinetics and obeyed the equation for an intra particle diffusion process. The equilibrium concentration data of Tm(III) ions could be described satisfactorily by several adsorption isotherms. The Freundlich adsorption isotherm constants 1/nand KFare 0.66±0.02 and (5.7±0.3). 10-3mol. g-1, respectively. The Langmuir isotherm constants for monolayer coverage (Q) and binding strength of sorption (b) are (2.5±0.7). 10-5mol. g-1and (1.6±0.1). 104l. mol-1, respectively. The sorption capacity derived from Dubinin-Radushkevich (D-R) isotherm is (1.7±0.2). 10-4mol. g-1and the sorption free energy (E) is 9.8±0.2 kJ. mol-1indicating chemisorption phenomena. The thermodynamic parameters indicate that the sorption of Tm(III) ions onto PUF is endothermic, entropy driven and spontaneous in nature.  相似文献   

18.
The loss of methyl from unstable, metastable and collisionally activated [CH2?CH? C(OH)?CH2]+˙ ions (1+˙) was examined by means of deuterium and 13C labelling, appearance energy measurements and product identification. High-energy, short-lived 1+˙ lose methyl groups incorporating the original enolic methene (C(1)) and the hydroxyl hydrogen atom (H(0)). The eliminations of C(1)H(1)H(1)H(4) and C(4)H(4)H(4)H(0) are less frequent in high-energy ions. Metastable 1+˙ eliminate mainly C(1)H(1)H(1)H(4), the elimination being accompanied by incomplete randomization of the five carbon-bound hydrogen atoms. The resulting [C3H3O]+ ions have been identified as the most stable CH2?CH? CO+ species. The appearance energy for the loss of methyl from 1 was measured as AE[C3H3O]+ = 10.47 ± 0.05 eV. The critical energy for 1+˙ → [C3H3O]+ + CH3˙ is assessed as Ec ? 173 kJ mol?1. Reaction mechanisms are proposed and discussed.  相似文献   

19.
Three metal–organic coordination polymers, [M(2,6-bip)2] (M = Zn ( 1 ), Ni ( 2 )) and [Cu (tfbdc)(2,6-bipH)2]•2H2O ( 3 ), were obtained with the similar solvothermal reaction systems of bivalent transition metal salt, 6-(1H-imidazol-1-yl)-2(1H)-pyridinone (2,6-bipH) and 2,3,5,6-tetrafluoroterephthalic acid (H2tfbdc). The three coordination polymers show different framework features, namely 3D ( 1 ), 2D ( 2 ) and 1D ( 3 ) structures, which are resulted from different single-metal ion “node” and “linker” coordination modes. The [ZnO2N2] tetrahedron in 1 and [NiO2N4] octahedron in 2 as a node, is formed from Zn sp3 and Ni d2sp3 hybrid orbits, respectively, while the linker, 2,6-bip, adopts the μ21η1η0 in 1 and μ21η1η1 in 2 coordination modes. PLATON calculation suggests that 1 possesses the micropore structure with a pore volume of 14.2%. In 3 , the [CuO2N2] parallelogram as a node is derived from Cu dsp3 hybrid orbital, while the linkers of 2,6-bipH and tfbdc adopt the μ11η0η0 and μ11η011η0 coordination modes, respectively. Intriguingly, Zn(d10)-centre coordination polymer 1 shows strong blue emission, which are derived from the π* → π transition of the 2,6-bipH ligand. Moreover, 1 exhibits high stability and strong luminescence in both water and ethanol. At this point, the performance of 1 is studied as a chemical sensor for detecting fluoroquinolones drug. The results show that 1 can detect enoxacin in ethanol solution with a low detection limit of 3.61 × 10−5 M. The luminescent sensing mechanisms were investigated from experimental methods and theoretical calculation in detail as well.  相似文献   

20.
The reactions D + H2 (v = 0, 1) → HD (v = 0, 1) + H have been studiedin a discharge flow reactor by CARS-spectroscopy. For H2(v = 0) molecules a rate constant of (4, 0 ± 1, 0) 10?16 cm3 s?1 is obtained at 310 K from measured HD (v = 0, 1) product yields. Keeping the degree of vibrational excitation of H2in the microwave discharge in the range of 1% from the increase of the HD (v = 0, 1) CARS signals a rate of k2a, b = (1, 0 ± 0, 4) 10?13cm3 s?1 is derived. The total consumption of H2 (v = 1) in the presence of D atoms gives a rate k2 = (1, 9 ± 0, 2) 10?13 cm3 s?1 at 310 K. The resultsare discussed in regard to previous measurements and theoretical treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号