首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A series of polymer-silica hybrid materials consisting of amino-terminated anionic waterborne-polyurethane (WPU) and inorganic silica particles have been prepared through a sol-gel process in the absence of an external catalyst. Typically, amino-terminated anionic WPU was first synthesized from polycaprolactone, dimethylol propionic acid, and 4,4′-methylenebis(cyclohexyl isocyanate) with specific molar ratios, followed by further reaction with triethylamine and triethylene tetramine to give as-prepared WPU. The WPU obtained was characterized by FTIR spectroscopy and gel permeation chromatography. Subsequently, a series of hybrid materials with different silica contents were prepared by performing sol-gel reactions with tetraethyl orthosilicate (TEOS) in an amino-terminated WPU matrix without the addition of an external catalyst. This was followed by examination by transmission electron microscopy and 29Si solid-state NMR. The terminated primary amine groups attached to the as-prepared WPU chains functioned as an internal base catalyst for the sol-gel process of TEOS. The effect of composition on the thermal stability, mechanical strength, surface wettability, and optical clarity of the hybrid materials was evaluated by the thermogravimetric analysis, dynamic mechanical analysis, contact angle measurement, and UV-visible transmission spectroscopy, respectively.  相似文献   

2.
Free radical polymerization of N‐isopropylacrylamide (NIPAAm) and crosslinker solutions, which were fulfilled in silica particles with an interpenetrated and nanometer‐sized porous structure (a diameter of 3 mm and mean pore sizes of 15, 30, and 50 nm), fabricated hybrids of organic hydrogels and inorganic silica. Differential scanning calorimetric analyses of the hybrids revealed that silica components affected the thermoresponsive properties of polyNIPAAm hydrogels. Porous polyNIPAAm hydrogels were prepared by the subsequent acid treatment of the hybrids to remove silica. Transmission Fourier transformed infrared spectra indicated the selective extraction of silica. Scanning electron microscopic observation of the hydrogels confirmed the porous structure. The deswelling rate of porous hydrogels was 7 times larger than that of conventional hydrogels and increased with increasing the pore size of silica used. However, the swelling was not affected by the pore formation. The thermoresponsiveness of porous polyNIPAAm hydrogels could be regulated by the pore size. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3542–3547, 2002  相似文献   

3.
由正硅酸乙酯水解制得的SiO2溶胶,在以γ—甲基丙烯酰氧丙基三甲氧基硅烷(TMSPM)为偶联剂的体系中,经溶胶-凝胶法制备了透明的光固化聚氨酯丙烯酸酯杂化材料[(PUA—TMSPM)/SiO2]。研究了盐酸浓度对(PUA-TMSPM)/SiO2结构与性能的影响。结果表明:随着pH值减小,硅溶胶体系和(PUA-TM-SPM)/SiO2杂化体系的热稳定性增大;盐酸摩尔分数XHCl的增加使(PUA-TMSPM)/SiO2光固化膜表面的两相界面结合更紧密,涂层变得更致密,并导致膜的硬度和耐磨性提高。  相似文献   

4.
Temperature dependent synthesis of micro- and meso-porous silica employing the thermo-responsive homopolymer poly(N-isopropylacrylamide) or the random copolymer poly(N-isopropylacrylamide-co-acrylic acid) as structure-directing agent (SDA) and Na2SiO3 as silica source is proposed. The thermo-responsive character of the SDA provides the advantages including (1) temperature dependent synthesis of microporous silica, hierarchically micro-mesoporous silica, and mesoporous silica just by changing the aging temperature below or above the low critical solution temperature of the thermo-responsive SDA, and (2) elimination of the thermo-responsive SDA from silica matrix by water extraction. The synthesis mechanism is discussed, and the effect of the aging temperature and the weight radio of SDA/Na2SiO3 on the synthesis of micro- and meso-porous silica are studied. Microporous silica, hierarchically micro-mesoporous silica and mesoporous silica with the surface area at 3.5−9.0 × 102 m2/g and the pore volume at 0.28−1.13 cm3/g and the average pore size ranging from 1.1 to 9.0 nm are synthesized. The strategy affords a new and environmentally benign way to fabricate porous silica materials, and is believed to bridge the gap between the synthesis of microporous and mesoporous silica materials.  相似文献   

5.
Summary.  Transparent nanocomposite gels made of hybrid organic/inorganic polymers, synthesized through the sol-gel method, composed of poly-(ethylene oxide) or poly-(propylene oxide) chains, and grafted on silica through urea bridges, have been studied by steady-state and time-resolved photoluminescence techniques. These nanocomposite materials consist of two distinguished subphases, an organic and an inorganic one. The volume fraction of the organic (polyether) subphase is larger than that of the inorganic (silica) subphase, and it increases with increasing polyether chain size. The condensation of the silica subphase provides luminescent entities emitting light by electron-hole recombination on delocalized states associated with the active chemical species of the urea bridges. Materials with smaller polyether chains are more luminescent than such with longer polyether chains. Divalent or trivalent cations introduced into these materials enhance the luminescence intensity by solubilization close to the silica cluster surface and thus by decreasing surface defects and the ensuing quenching mechanism. Received June 23, 2000. Accepted (revised) July 18, 2000  相似文献   

6.
Dielectric relaxation spectroscopy was used to investigate the effect of the inorganic phase on the polymeric relaxation dynamics in PMMA/silica hybrids synthesized in situ via sol-gel processes. It was found that the large-scale molecular motions of PMMA were influenced by the addition of silica, inducing longer mean relaxation times, more heterogeneous relaxing environments and the higher activation energy. Explanations based on hydrogen-bond interactions between two phases and a fraction of entrapped chain segments in silica networks were proposed to understand the influence of the silica.  相似文献   

7.
Herein, novel multi-responsive injectable polyester hydrogels were reported based on the diselenide-containing poly(ε-caprolactone) copolymers ((mPEG-PCL-Se)2). The (mPEG-PCL-Se)2 solution remained a free-flowing state at ambient temperature but spontaneously turned into a semisolid hydrogel upon heating to physiologic temperature. The phase transition temperature was examined to be dependent on the composition and aqueous concentration of the copolymers. More importantly, the thermo-responsive hydrogels were endowed with oxidation and reduction-triggered degradation by the incorporation of diselenide groups. Accordingly, the degradation of poly(ε-caprolactone)-based hydrogels was greatly improved and the rate of degradation was well regulated by the concentration of hydrogen peroxide (H2O2) or glutathione (GSH). This superior stimuli-responsive degradation could lead to an enhanced drug release of encapsulated drug (Doxorubicin, DOX). Thus the oxidation and reduction-triggered degradable diselenide-containing poly(ε-caprolactone) hydrogels would offer great potential for the controlled drug delivery.  相似文献   

8.
Poly(N-acetylethylenimine) (polyoxazoline) (POZO) with a terminal triethoxysilyl group was successfully synthesized by the ring-opening polymerization of 2-methyl-2-oxazoline followed by termination with 3-aminopropyltriethoxysilane. Triethoxysilyl-terminated telechelic POZO was prepared by using a bifunctional initiator. These silane coupling POZOs were subjected to acid-catalyzed cohydrolysis polymerization with tetraethoxysilane by the so-called “sol-gel” method to produce a novel organic/inorganic hybrid polymer (block copolymer), which was a homogeneous transparent/glassy composite material. The obtained hybrid showed higher hydrophilic properties compared with silica gel without POZO segments. On the other hand, a hybrid polymer consisting of poly(2-ethyl-2-oxazoline) and silica gel, which absorbed both water and organic solvents, showed amphiphilic properties. POZO segments were eliminated by pyrolysis of the present hybrid polymer to produce a silica with micropores.  相似文献   

9.
聚醚型氨酯酰亚胺/二氧化硅杂化材料的合成与性能研究   总被引:4,自引:0,他引:4  
利用Sol Gel共聚合反应制备出聚醚型氨酯酰亚胺 (PUI) /二氧化硅 (SiO2 )杂化材料 .利用NMR、FTIR、TG、DSC及SEM等测试手段对性能进行了基本表征 .FTIR研究结果发现在 10 0℃下能同时完成有机相PUI的亚胺化和无机相SiO2 凝胶网络的Sol Gel转变 .TG及SEM发现SiO2 含量为 9wt%时SiO2 聚集相粒径在 0 2~1 0 μm之间 ,耐热性明显提高并达到最佳 ;发现SiO2 含量的增加其颗粒粒径不断增大 ,并不断聚集成大粒径SiO2 相 ,有机和无机相分离明显 .DSC研究显示 ,SiO2 相的引入 ,对杂化材料聚醚软段富集相的Tg 不产生明显影响 .  相似文献   

10.
Two-component thermo-responsive hydrogels poly(N-isopropylacrylamide)-co-vinylbenzyltrimethylammonium chloride (NIPA-co-VBT) and poly(N-isopropylacrylamide)-co-p-sodium styrene sulphonate (NIPA-co-SSS) were prepared by using high energy gamma radiation. The gels were characterized by Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and sol-gel analysis. The presence of ionic monomers in NIPA leads to lower gel content. Introduction of ionic components in the matrix enhanced swelling extent but caused slower volume transition. The swelling studies in alcohol indicated that swelling extent was function of polarity of the swelling medium and all gels followed the order water > methanol > ethanol > iso-propanol. In mixed co-solvents (water-alcohol), they exhibit complex reentrant behavior. The co-polymer gels containing VBT swelled faster and to higher extent than those containing SSS. The dynamic swelling studies indicated that diffusion of water in PNIPA gel shifts from Fickian for PNIPA to anomalous for NIPA-co-ionic gels also the mean swelling time (MST) decreases for gels containing ionic monomers.  相似文献   

11.
This work reports the sol-gel synthesis of silica hybrids. We determined the effect of the type and quantity of silica precursors and organic compounds on the resulting structure, surface area, nanostructure design and size, and potential applications. The structure of the synthesized hybrids was analyzed using FT-IR, XRD, BET-Analysis, SEM, and AFM. We demonstrate the immovilization of whole living thermophilic bacterial cells with cyanocompound degradation activity in the synthesized silica hybrid biomaterials by entrapment, chemical binding, and adsorption.  相似文献   

12.
Polyvinylamine hydrogels with silica particles encapsulated (PVAm/silica) were produced by a two‐step synthesis. In the first step, polyvinylformamide/silica (PVFA/silica) hybrids were synthesized from vinylformamide (VFA) and 1,3‐divinylimidazolidin‐2‐one (1,3‐bisvinylethyleneurea, BVU), as the crosslinker, by radical copolymerization in silica/water suspensions using different compositions of VFA/BVU. The target product PVAm/silica was obtained by acidic hydrolysis of the PVFA/silica hydrogels in a second step. The chemical structures of both hydrogels, PVFA/silica and PVAm/silica, respectively, were revealed by solid‐state 13C(1H) cross‐polarity/magic‐angle spinning NMR spectroscopy. Both hydrogels swelled significantly in water. The swelling capacity of the two systems was characterized by the correlation length ξ (or hydrodynamic blob size) of the network meshes with small‐angle neutron scattering experiments. ξ is significantly larger for PVAm/silica than for PVFA/silica, which corresponds to the observed higher swelling capacity of this polyelectrolyte material. Furthermore, the swelling behavior of the hybrid hydrogels was quantitatively described in terms of free swell capacity, centrifuge‐retention capacity, adsorption against pressure, and free swell rate as compared with values of the corresponding copolymer hydrogels. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3144–3152, 2002  相似文献   

13.
The organic/inorganic hybrid nanomaterials containing silica nanoparticles are synthesized by sol-gel crosslinking process. The tetraethoxysilane (TEOS) and γ-aminopropyltriethoxylsilane as coupling agents are used as a precursor. The 2,4,6-tri [(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) as crosslinking agent is used to form covalent bonds among the inorganic nanoparticles. The chemical and morphological structures of the organic/inorganic hybrid are characterized with FTIR spectra, 29Si-NMR, x-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic force microscope (AFM). The results show that the organic/inorganic hybrid forms covalent bond between the inorganic nanoparticle and Tri-EBAC. The network organic/inorganic hybrid can form good film with even nanometer particles. The network organic/inorganic hybrids nanomaterial not only exhibits the thermal properties of inorganic compounds, but also exhibits the thermal properties of organic polymer.  相似文献   

14.
Incorporation of CsCl in silica via sol-gel route catalyzed by biogenic compounds with three different concentrations of CsCl has been carried out by using organic compounds extracted from Nitzschia spp., a freshwater diatom alga. The visual integrity, nitrogen adsorption and electron microscopies were used to characterize the silica gels obtained from the biocatalysts employing sol-gel process with tetraethylorthosilicate (TEOS) as precursor. The usual sequence for the sol-gel process was used: sol preparation, gelation, aging, drying and heat treatment. Differential thermal analysis (DTA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize the incorporation of CsCl in the biomimetic silica. Chemical analysis of the biocatalysts was used to explain the exothermic behavior of the samples during DTA and DSC. The incorporation of CsCl in the silica matrix with a process using biogenic catalysts proved to be more effective compared to another process using inorganic catalysts.  相似文献   

15.
Non-ordered organic-inorganic mesoporous hybrid materials with basic sites have been synthesized following a fluoride-catalysed sol-gel process at neutral pH and low temperatures that avoids the use of structural directing agents (SDAs). Proton sponges have been used as the organic builder of the hybrids, while the inorganic part corresponds to silica tetrahedra. The proton sponges are diamines that exhibit very high basicity and, after functionalization, have been introduced as part of the walls of the mesoporous silica by one-pot synthesis. Several hybrids with different organic loadings have been synthesized and characterized by gas adsorption, thermogravimetric and elemental analysis, solid state MAS-NMR and FTIR spectroscopy. These hybrids show high activity as base catalysts and can be recycled.  相似文献   

16.
The hybridization of lipid membranes with inorganic silica-based framework results in mechanically stable biomembrane mimics. This account describes three types of silica-based biomimetic membranes. As the first example, a Langmuir monolayer of dialkylalkoxysilane was polymerized and immobilized onto a porous glass plate. Permeability through the monolayer-immobilized glass was regulated by phase transition of the immobilized monolayer. In the second example, spherical vesicles covalently attached to a silica cover layer (Cerasome) were prepared. The Cerasome was stable enough to be assembled into layer-by-layer films without destruction of its vesicular structure. This material could be an example of the multicellular assembly. Mesoporous silica films densely filling peptide assemblies (Proteosilica) are introduced as the third example. The Proteosilica was synthesized as a transparent film through template sol-gel reaction using amphiphilic peptides.  相似文献   

17.
Novel mesostructured silica thin films were prepared on a Si substrate by a vapor-phase synthesis. Vapor of tetraethoxysilane (TEOS) was infiltrated into a surfactant film consisting of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. Nanophase transition from a lamellar structure to a two-dimensional cage structure of a silica-surfactant nanocomposite was found under vapor infiltration. The rearrangement into the cage structure implies high mobility of the silica-surfactant composites in solid phase. The silica thin films have two-dimensionally connected cagelike mesopores and are isotropic parallel to the film surface. The structure of pores of the films is advantageous for next-generation low-k films. The mesoporous structure has a large lattice parameter d of approximately 102 A, silica layer thickness of approximately 58 A, pillar diameter in the middle of approximately 60 A, pore size of approximately 72 A, BET surface area of approximately 729 m(2)/g, and pore volume of approximately 1.19 cm(3)/g. The films synthesized by the vapor infiltration show a lower concentration of residual Si-OH groups compared to the films prepared by a conventional sol-gel method. The films show high thermal stability up to 900 degrees C and high hydrothermal stability. This method is a simpler process than conventional sol-gel techniques and attractive for mass production of a variety of organic-inorganic composite materials and inorganic porous films.  相似文献   

18.
In recent years, intelligent hydrogels which can change their swelling behavior and other properties in response to environmental stimuli such as temperature, pH, solvent composition and electric fields, have attracted great interest. The hydrogels based on polysaccharides incorporated with thermo-responsive polymers have shown unique properties such as biocompatibility, biodegradability, and biological functions in addition to the stimuli-responsive characters. These "smart" hydrogels exhibit single or multiple stimuli-responsive characters which could be used in biomedical applications, including controlled drug delivery, bioengineering or tissue engineering. This review focuses on the recent developments and future trends dealing with stimuli-responsive hydrogels based on grafting/blending of polysaccharides such as chitosan, alginate, cellulose, dextran and their derivatives with thermo-sensitive polymers. This review also screens the current applications of these hydrogels in the fields of drug delivery, tissue engineering and wound healing.  相似文献   

19.
Intelligent hydrogels are materials with abilities to change their chemical nature or physical structure in response to external stimuli showing promising potential in multitudinous applications. Especially, photo-thermo coupled responsive hydrogels that are prepared by encapsulating photothermal agents into thermo-responsive hydrogel matrix exhibit more attractive advantages in biomedical applications owing to their spatiotemporal control and precise therapy. This work summarizes the latest progress of the photo-thermo coupled responsive hydrogel in biomedical applications. Three major elements of the photo-thermo coupled responsive hydrogel, i.e., thermo-responsive hydrogel matrix, photothermal agents, and construction methods are introduced. Furthermore, the recent developments of these hydrogels for biomedical applications are described with some selected examples. Finally, the challenges and future perspectives for photo-thermo coupled responsive hydrogels are outlined.  相似文献   

20.
阳离子化热响应微凝胶的合成及在二氧化硅矿化中的应用   总被引:1,自引:0,他引:1  
采用无皂乳液聚合技术,在亚甲基双丙烯酰胺(MBA)为交联剂的情况下,N-异丙基丙烯酰胺(NIPAM)与甲基丙烯酰氧乙基三甲基氯化铵(DMC)发生共聚,生成具有阳离子功能化的热响应微凝胶poly-(NIPAM-co-DMC).TEM研究表明该微凝胶粒子的粒径约为200 nm左右,具有规则的球形形态.DLS和1H-NMR研究证实了微凝胶粒子的最低临界溶液温度(LCST)在34℃左右.进一步以此微凝胶为模板,在中性条件下,以四甲氧基硅烷(TMOS)为硅源,在此模板上仿生沉积S iO2,生成poly(NIPAM-co-DMC)/S iO2杂化纳米粒子.FTIR、TEM、1H-NMR及TGA等研究表明S iO2在聚合物模板上发生了沉积.能谱分析进一步证明了S iO2主要分布在杂化纳米粒子的壳层区域.另外,当矿化反应温度高于微凝胶的LCST值时,体系生成了具有明显核壳结构的异形杂化粒子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号