首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystalline structures of “microlayer” and “nanolayer” polyethylene have been examined in coextruded films comprised of alternating layers of high-density polyethylene and polystyrene. Transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), and wide-angle x-ray scattering (WAXS) reveal that microlayer polyethylene, where the layer thickness is on the order of several microns, crystallizes with the normal unoriented lamellar morphology. In nanolayer films, where the film thickness of tens of nanometers is on the size scale of molecular dimensions, lamellae are oriented with the long axes perpendicular to the extrusion direction in a row-nucleated morphology similar to structures described in the literature. The lamellae are partially twisted about the long axes. The preferred twist angles of ±40° orient the lamellar surfaces normal to the layer surface. The row-nucleated morphology imparts highly anisotropic mechanical properties to the nanolayer polyethylene.  相似文献   

2.
综述了聚烯烃类分离膜表面改性研究的主要进展,着重介绍了高能辐射接枝、光引发接枝、等离子体接枝、表面臭氧处理、以及超临界CO2状态下接枝等表面改性方法的特点,分析了改性后聚烯烃膜的性能,并对聚烯烃分离膜表面改性进行了展望。  相似文献   

3.
Polyolefins are basic materials in the plastics. Their application is limited by their low thermostability, adhesion, hardness and other physico-mechanical properties. The following treatments are known to improve and modify polyolefin properties: the incorporation of inorganic or organic fillers with a greater hardness and rigidity into the polyolefin matrix, the grafting of functional groups to polyolefins, and crosslinking with the formation of a network structure in the polyolefin matrix. In the case of polymers and inorganic materials, the activation of their surface by the functionalizing and fixing of transition metals allows one to perform polymerization of monomers on a surface to obtain a polymer–polymer composites and a highly filled polymer–inorganic composites.  相似文献   

4.
Controlled (low degree) grafting of a polar group to a non‐polar polymer or reverse is an important means to change the polarity of the base polymer, maintaining the properties of the polymer. In the present study, a polar monomer, methacrylic acid (MAA), was grafted onto three different types of “Engages” (a special type of polyolefin elastomer) in aqueous medium by gamma radiation. Grafting parameters (total dose, MAA concentration, and Mohr's salt concentration) were optimized for the desired amount of low‐degree grafting (less than 15 wt%). The grafting yields were measured gravimetrically. Pure and grafted Engages were characterized by Fourier transformed infrared spectroscopy, contact angle measurement, and scanning electron microscope. Fourier transformed infrared spectroscopy spectra confirmed the successful grafting of MAA onto the Engages. For all three, the best yields were found at 3‐kGy gamma radiation dose, 25‐vol% MAA, and 20‐mM Mohr's salt concentration. The grafting efficiencies follow a descending trend like Engage 8150 > Engage 7447 > Engage 8003. From contact angle measurement, it was seen that the hydrophilicities of all Engage surfaces were increased after grafting. Scanning electron microscope illustrated the best distribution of grafted MAA molecules to be on Engage 8150 surface followed by Engage 7447 and Engage 8003, respectively. The tensile testing results suggested that the mechanical properties of the base polymers remained almost unchanged after grafting. Thus, without detrimenting any basic properties, polyolefin elastomers can be grafted to achieve desired yield by an environmental‐friendly method, gamma radiation grafting, in aqueous media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We report the synthesis of random polyampholyte brushes containing 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and methacrylic acid (MAA). The preparation of polyampholyte brushes is performed by the “grafting from” strategy using surface‐initiated atom transfer radical polymerization (ATRP). The first step consists in the formation of the self‐assembled monolayer of the ATRP initiator. Secondly, the chains are grown from the surface by controlled/“living” radical polymerization. The random copolymer brushes and the corresponding homopolymers brushes containing 2‐(dimethylamino)ethyl methacrylate and tert‐butyl methacrylate (tBuMA) are prepared. The last step is the deprotection of the tBuMA form to the MAA segment by in situ hydrolysis reaction. The annealed DMAEMA group can also be converted to the quenched form by in situ quaternization reaction. This results in the formation of “annealed” and “semiannealed” polyampholyte brushes. The “annealed” polyampholyte corresponds to the random copolymer that contains only annealed units, weak acid and weak base. The “semiannealed” polyampholyte consists of the mixture of annealed (weak acid) and quenched (quaternized segment) units. Polyampholyte brushes with various grafting densities are synthesized and carefully characterized using surface techniques such as ellipsometry and FTIR‐ATR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4305–4319, 2008  相似文献   

6.
“Grafting through” polymerization represents copolymerization of free monomers in solution and polymerizable units bound to a substrate. Free polymer chains are formed initially in solution and can incorporate the surface-bound monomers, and thereby, get covalently bonded to the surface during the polymerization process. As more growing chains attach to the surface-bound monomers, an immobilized polymer layer is formed on the surface. We use a combination of computer simulation and experiments to comprehend this process for monomers bound to a flat impenetrable substrate. We concentrate specifically on addressing the effect of spatial density of the surface-bound monomers on the formation of the surface-attached polymers. We employ a lattice-based Monte Carlo model utilizing the bond fluctuation model scheme to provide molecular-level insight into the grafting process. For experimental validation, we create gradients of density of bound methacrylate units on flat silicon wafers using organosilane chemistry and carry out “grafting through” free radical polymerization initiated in bulk. We report that the proximity of the surface-bound polymerizable units promotes the “grafting through” process but prevents more free growing chains to “graft through'' the polymerizable units. The “grafting through” process is self-limiting in nature and does not affect the overall density of the surface-bound polymer layer, except in case of the highest theoretical packing density of surface-bound monomers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 263–274  相似文献   

7.
A novel visible light‐induced living surface grafting polymerization was developed by a strategy in which isopropyl thioxanthone (ITX) was first photoreduced under UV light and sequentially coupled onto the surface of polymeric substrates, and the produced isopropyl thioxanthone‐semipinacol (ITXSP) “dormant” groups were subsequently reactivated under visible light to initiate a surface grafting polymerization. By using glycidyl methacrylate (GMA) and low‐density polyethylene (LDPE) films as models, a “living” surface grafting polymerization initiated by ITXSP under visible light at room temperature was observed. Both the surface grafting chain length versus grafting conversion of monomer and the grafting polymerization rate versus monomer concentration demonstrated a linear dependence, which is in accord with the known characteristics of living polymerization. The livingness rendered it possible to accurately control the thickness of the grafted layer by simply altering the irradiation time. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Phys, 2009  相似文献   

8.
The commonly used multi-center initiation methods always lead to the formation of quantities of homopolymer in the surface tailoring based on reverse atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. In this study, a monocenter redox pair constructed of silica bearing tert-butyl hydroperoxide groups and ascorbic acid (SiO2-TBHP/AsAc) was applied to substitute the commonly used initiation method of R-supported RAFT grafting polymerization. All the propagating radicals were restricted on the surface of solid particles during the whole procedure theoretically, resulting in a higher grafting efficiency of 95.1% combined with the “controllable” feature at 10 h. This redox pair was also used to initiate the reverse ATRP in miniemulsion successfully with a grafting efficiency of 86.3% at 10 h. The grafting efficiency obtained under this monocenter initiation method was significantly higher than that of the frequently reported surface modification by reverse ATRP and RAFT polymerization. In addition, the high-efficient surface tailoring was traced and confirmed by nuclear magnetic resonance, Fourier transform infrared, X-ray photoelectron spectroscopy, thermogravimetric analysis, transmission electron microscopy, and other analysis tests. The advantage of this monocenter redox pair will open a new avenue for the potential “high-efficient” surface tailoring of various materials.  相似文献   

9.
A principal possibility of the utilization of polymer peroxides for the modification of polymer surfaces that provides an immobilization of the tailored quantity of peroxide groups at them has been established. The processes of polymer surface activation with following “grafting from” or “grafting to” utilizing immobilized peroxide groups has been studied using a FTIR-ATR spectroscopy, ellipsometry and measurements of contact angles. The proposed technique of polymer surface activation is based on the universal ability of carbon chain polymer to participate the free radical reactions.  相似文献   

10.
The spin-label method was used to study the structure and molecular motion of poly(ethylene oxide) (PEO) chains adsorbed on a silica-tethered poly(methyl methacrylate) (PMMA). Spin-labelled PEO with a narrow molecular weight distribution, having number averaged molecular weight (M N)=6.0×103, was adsorbed on the surface of the silica-tethered PMMA with various grafting ratios in carbon tetrachloride solution at 35?°C. ESR spectra were measured at various temperatures after the samples were completely dried. The ESR spectra are composed of two spectra arising from spin-labels attached to “train” and “tail” segments, which are strongly and weakly interacted with the silica surface, respectively. The fractional amount of the “tail” segments increases extremely with the grafting ratio of PMMA. Molecular mobility of the PEO chains estimated from the temperature dependence of the ESR spectra also decreases significantly with the grafting ratio of PMMA. Structure and molecular motion of the PMMA chains tethered on the silica were also studied using the spin-labelled PMMA. Consequently, parts of the PEO segments penetrate into the PMMA chains and is adsorbed on the silica surface (“train” segments), whereas parts of the PMMA segments protrude from the surface. The other PEO segments are entangled with the tethered PMMA chains (“tail” segments).  相似文献   

11.
The discovery (1968) of the high yield Ziegler-Natta catalysts based on active MgCl2 was the beginning of a scientific and industrial revolution that has brought about the creation of superactive, isospecific, spheriform fourth generation catalytic systems. The rationalization of the polymer/catalyst replication phenomenon and the understanding of the catalyst “architecture” effects on polymer shape and morphology has led to the exploitation of the “Reactor Granule Technology”. This has made the generation of a broad range of homo, copolymers and multiphase alloys (Catalloy) possible by synthesis, most of which having a previously unobtainable spectrum of performance (Refs. 1,2,3). The reactor granule technology concept has also been the basis for the achievement of a family of polyolefin/non polyolefin alloys with engineering properties. More recently, the reactor granule approach has been extended so as to couple the advantages of both heterogeneous and homogeneous metallocene catalysts (mixed catalysis), thus allowing the synthesis of a very new family of “in situ” polyolefin alloys.  相似文献   

12.
We have studied the distribution of grafting ratios of N-vinylpyrrolidone in the depth of polyurethane tubing, using an electron microprobe and microdensitometry. The influence of synthesis parameters on the distribution of PNVP is discussed. “Homogeneous” samples exhibit a superficial extraction and “undulations” in the grafting ratio attributable to the diffusion of the monomer during synthesis. If the grafting is carried out without preliminary swelling of the tubes, the grafting is limited to a superficial layer. The use of cupric salts (in order to inhibit the homopolymerization of NVP) leads to higher over-all grafting ratios but there is important inhibition in a superficial layer of 50 microns thickness. We examine critically the two methods used and compare the results with those obtained by FMIR for the surface of the copolymers.  相似文献   

13.
Multifunctional, biocompatible, and brush‐grafted poly(ethylene glycol)/poly(ε‐caprolactone) (PEG/PCL) nanoparticles have been synthesized, characterized, and used as vehicles for transporting hydrophobic substances in water. For anchoring the polymer mixed brushes, we used magnetic‐silica particles of 40 nm diameter produced by the reverse microemulsion method. The surface of the silica particle was functionalized with biocompatible polymer brushes, which were synthesized by the combination of “grafting to” and “grafting from” techniques. PEG was immobilized on the particles surface, by “grafting to,” whereas PCL was growth by ROP using the “grafting from” approach. By varying the synthetic conditions, it was possible to control the amount of PCL anchored on the surface of the nanoparticles and consequently the PEG/PCL ratio, which is a vital parameter connected with the arrangement of the polymer brushes as well as the hydrophobic/hydrophilic balance of the particles. Thus, adjusting the PEG/PCL ratio, it was possible to obtain a system formed by PEG and PCL chains grafted on the particle's surface that collapsed in segregated domains depending on the solvent used. For instance, the nanoparticles are colloidally stable in water due to the PEG domains and at the same time are able to transport, entrapped within the PCL portion, highly water‐insoluble drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2966–2975  相似文献   

14.
Giant surfactants are polymer‐tethered molecular nanoparticles (MNPs) and can be considered as a subclass of giant molecules. The MNPs serve as functionalized heads with persistent shape and volume, which may vary in size, symmetry, and surface chemistry. The covalent conjugation of MNPs and polymer tails affords giant surfactants with diverse composition and architecture. Synthetic strategies such as “grafting‐from” and “grafting‐onto” have been successfully applied to the precise synthesis of giant surfactants, which is further facilitated by the emergence of “click” chemistry reactions. In many aspects, giant surfactants capture the essential features of small‐molecule surfactants, yet they have much larger sizes. They bridge the gap between small‐molecule surfactants and traditional amphiphilic macromolecules. Their self‐assembly behaviors in solution are summarized in this Review. Micelle formation is affected not only by their primary chemical structures, but also by the experimental conditions. This new class of materials is expected to deliver general implications on the design of novel functional materials based on MNP building blocks in the bottom‐up fabrication of well‐defined nanostructures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1309–1325  相似文献   

15.
16.
The facile and efficient one‐pot synthesis of monodisperse, highly crosslinked, and “living” functional copolymer microspheres by the ambient temperature iniferter‐induced “living” radical precipitation polymerization (ILRPP) is described for the first time. The simple introduction of iniferter‐induced “living” radical polymerization (ILRP) mechanism into precipitation polymerization system, together with the use of ethanol solvent, allows the direct generation of such uniform functional copolymer microspheres. The polymerization parameters (including monomer loading, iniferter concentration, molar ratio of crosslinker to monovinyl comonomer, and polymerization time and scale) showed much influence on the morphologies of the resulting copolymer microspheres, thus permitting the convenient tailoring of the particle sizes by easily tuning the reaction conditions. In particular, monodisperse poly(4‐vinylpyridine‐co‐ethylene glycol dimethacrylate) microspheres were prepared by the ambient temperature ILRPP even at a high monomer loading of 18 vol %. The general applicability of the ambient temperature ILRPP was confirmed by the preparation of uniform copolymer microspheres with incorporated glycidyl methacrylate. Moreover, the “livingness” of the resulting polymer microspheres was verified by their direct grafting of hydrophilic polymer brushes via surface‐initiated ILRP. Furthermore, a “grafting from” particle growth mechanism was proposed for ILRPP, which is considerably different from the “grafting to” particle growth mechanism in the traditional precipitation polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
The effects of radicals on silica surface, which were formed by γ‐ray irradiation, on the polymerization of vinyl monomers were investigated. It was found that the polymerization of styrene was remarkably retarded in the presence of γ‐ray‐irradiated silica above 60 °C, at which thermal polymerization of styrene is readily initiated. During the polymerization, a part of polystyrene formed was grafted onto the silica surface but percentage of grafting was very small. On the other hand, no retardation of the polymerization of styrene was observed in the presence of γ‐ray‐irradiated silica below 50 °C; the polymerization tends to accelerate and polystyrene was grafted onto the silica surface. Poly(vinyl acetate) and poly(methyl methacrylate) (MMA) were also grafted onto the surface during the polymerization in the presence of γ‐ray‐irradiated silica. The grafting of polymers onto the silica surface was confirmed by thermal decomposition GC‐MS. It was considered that at lower temperature, the grafting based on the propagation of polystyrene from surface radical (“grafting from” mechanism) preferentially proceeded. On the contrary, at higher temperature, the coupling reaction of propagating polymer radicals with surface radicals (“grafting onto” mechanism) proceeded to give relatively higher molecular weight polymer‐grafted silica. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2972–2979, 2006  相似文献   

18.
反应挤出聚烯烃接枝改性研究进展   总被引:3,自引:0,他引:3  
金慧  盛京  原续波 《高分子通报》2006,(3):37-41,76
聚烯烃通过接枝改性可以有效地扩大其应用范围。本文简介了近几年反应挤出中聚烯烃接枝体系的组成和接枝机理,讨论了影响因素及其存在的副反应,同时介绍了接枝产物在增容改性等方面的应用。  相似文献   

19.
The paper gives definitions of conventional terms related to silicon surface science, such as surface, surfaced phase, adatoms, “in phase” and “on phase” atoms. The formation methods of surface phases are illustrated as well as their role in physical processes on the surface. The influence of surface phases on diffusion, desorption, adsorption, and phase interface formation at the silicon surface is described.  相似文献   

20.
Summary: Latices with “core-shell” particle morphology containing polar “core” and a shell on the basis of copolymer of styrene and functional vinyl monomer (allyl alcohol, vinyl acetate, methacrylic acid) has been obtained as a result of graft-copolymerization initiated from the surface of (meth)acrylate latex particles previously modified with functional polyperoxides. The processes of functional shell grafting as well as the processes of latex particle swelling with obtaining hollow microspheres due to neutralization of core carboxylic groups have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号