首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on interactions between amphiphilic block copolymers and lipid membranes have been focused traditionally on ABA triblock copolymers of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), widely due to their commercial availability. However, new architectures of amphiphilic block copolymer have been synthesized in recent years partially taking advantage of new polymerization techniques. This review focuses on amphiphilic block copolymers with potential biological activity and on model membrane systems used for studying interactions with such block copolymers. Experimental methods to study block copolymer–phospholipid interactions in Langmuir monolayers, liposomes, and planar bilayers are summarized. This work is intended to convey a better understanding of amphiphilic block copolymers used for in vitro and in vivo experiments in medicine and pharmacy. Recent developments and open questions are addressed.  相似文献   

2.
A first attempt was made to produce novel ABC triblock terpolymers with three potentially crystallisable blocks: polyethylene (PE), poly(ethylene oxide) (PEO), and poly(ε-caprolactone) (PCL). Polybutadiene-b-poly(ethylene oxide) diblock copolymers were synthesized by living anionic polymerization. Then, a non-catalyzed thermal polymerization of ε-caprolactone from the hydroxyl end group of the PB-b-PEO diblock precursors was performed. Finally, hydrogenation by Wilkinson catalyst produced PE-b-PEO-b-PCL triblock terpolymers. Side reactions were detected that lead to the formation of undesired PCL-b-PEO diblock copolymers, however, these impurities were successfully removed by purification. A range of triblock terpolymers with PCL and PEO minor components were prepared. Topological restrictions on the PEO middle block prevented this block from crystallizing while the complex crystallization behavior of the PE and PCL blocks was documented by DSC and WAXS measurements.  相似文献   

3.
The effect of crystallization of a hydrophobic poly(lactide) block on the self-organization of biocompatible and biodegradable amphiphilic poly(lactide)-block-poly(ethylene oxide) (PLA-b-PEO) copolymers in a dilute aqueous solution has been investigated. It was demonstrated that the co-crystallization of poly(L,L-lactide) [P(L,L)LA] and poly(d,d-lactide) [P(d,d)LA] chains under equimolar mixing of P(L,L)LA46-b-PEO113 and P(d,d)LA56-b-PEO113 copolymers resulted in the formation of stable and spontaneously water-redispersible stereocomplex micelles with semicrystalline P(L,L)LA/P(d,d)LA cores. It was shown that the P(L,L)LA46 / P(d,d)LA56-b-PEO113 stereo-complex micelles produced by dialysis can be potential vehicles for the anticancer agent oxaliplatin  相似文献   

4.
The pH-responsive double hydrophilic block copolymer poly(ethylene glycol)-b-poly(methacylic acid-co-4-vinyl benzylamine hydrochloride salt) (PEG-b-PMAA/PVBAHS) was synthesized. A series of PEG-b-PMAA/PVBAHS with different molecule weights and compositions were characterized by IR, 1H-NMR, elemental analysis and TGA. With different MAA/VBAHS ratio, the PEG-b-PMAA/PVBAHS copolymers had the different isoelectric point (IEP). Supermolecular structures of the block copolymers could be formed by the interionic interactions at different solution pH. Experiment results showed that the structures of the pH-responsive copolymers in aqueous solution could be changed at different pH environments. The aggregation of this double hydrophilic block copolymer in aqueous solution was determined by both of solution pH and copolymer composition.  相似文献   

5.
Poly(?-caprolactone)-b-poly(ethylene glycol)-b-poly(?-caprolactone) (PCL-b-PEG-b-PCL) triblock copolymer were synthesized by mean anionic activation of the hydroxyl end groups of poly(ethylene glycol) in presence of diphenylmethylsodium. Copolymers were characterized by SEC, FT-IR and 1H-NMR spectroscopy, TGA and DSC. Size exclusion chromatographic analysis of obtained copolymers indicated incorporation of CL monomer into PEG without formation of PCL homopolymer. Characterization by FT-IR and 1H NMR spectroscopy of the resulting polymeric products, with respect to their structure, end-groups and composition, showed that they are best described as ester-ether-ester triblock copolymers, whose compositions can be adjusted changing the feeding molar ratio of PEG to CL. The thermal stability of triblock copolymers was less that PEG precursor, but higher that PCL homopolymer. Analysis by mean DSC showed that all copolymers were semi-crystalline and their thermal behavior depending on their composition.  相似文献   

6.
Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxy-butyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a core-shell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery. Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060358036)  相似文献   

7.
Poly(sodium(2‐sulfamate‐3‐carboxylate)isoprene)‐b‐poly(ethylene oxide) and poly(ethylene oxide)‐b‐poly(sodium(2‐sulfamate‐1‐carboxylate)isoprene)‐b‐poly(ethylene oxide) double hydrophilic block copolymers were prepared by selective post polymerization reaction of the polyisoprene block, of poly(isoprene‐b‐ethylene oxide) diblocks or poly(ethylene oxide‐b‐isoprene‐b‐ethylene oxide) triblock precursors, with N‐chlorosulfonyl isocyanate. The precursors were synthesized by anionic polymerization high vacuum techniques and had narrow molecular weight distributions and predictable molecular weights and compositions. The resulting double hydrophilic block copolymers were characterized by FTIR and potentiometric titrations in terms of the incorporated functional groups. Their properties in aqueous solutions were studied by viscometry and dynamic light scattering. The latter techniques revealed a complex dilute solution behavior of the novel block copolymers, resulting from the polyelectrolyte character of the functionalized PI block and showing a dependence on solution ionic strength and pH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 606–613, 2006  相似文献   

8.
Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations. At larger concentration (>25 wt%), copolymer solutions showed a rich phase behavior, with the appearance of two types of rheologically active (more viscous) fluids and of physical gels depending on solution temperature and concentration. The copolymer behaved notably different despite their relatively similar block lengths. The ability of the polymeric micellar solutions to solubilize the antifungal drug griseofulvin was evaluated and compared to that reported for other structurally-related block copolymers. Drug solubilization values up to 55 mg g−1 were achieved, which are greater than those obtained by previously analyzed poly(ethylene oxide)-poly(styrene oxide), poly(ethylene oxide)-poly(butylene oxide), and poly(ethylene oxide)-poly(propylene oxide) block copolymers. The results indicate that the selected SO/EO ratio and copolymer block lengths were optimal for simultaneously achieving low critical micelle concentrations (cmc) values and large drug encapsulation ability. The amount of drug released from the polymeric micelles was larger at pH 7.4 than at acidic conditions, although still sustained over 1 day.  相似文献   

9.
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Gold nanoparticles by using the mixture of polystyrene-block-poly(2-vinyl pyridine)/poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PS-b-P2VP/P2VP-b-PEO) block copolymers as encapsulating agent was prepared. The prepared nanoparticles were characterized by transmission electron microscopy, UV-Vis spectroscopy and contact angle. It is demonstrated that the obtained gold nanoparticles are covered with mixed block copolymer shells. The hydrophilic property of the nanoparticles can be varied by the change of the dispersion medium. The obtained gold nanoparticles with mixed block copolymer shells are stable in organic solvents (such as tetrahydrofuran and toluene) and water.  相似文献   

11.
Summary: A novel amphiphilic ABCBA-type pentablock copolymer with properties that are sensitive to temperature and pH, poly(2-dimethylaminoethyl methacrylate)-block-poly(2,2,2-trifluoroethyl methacrylate)-block-poly(ε-caprolactone)-block-poly(2,2,2- trifluoroethyl methacrylate)-block-poly(2-dimethylaminoethyl methacrylate) (PDMAEMA- b-PTFEMA-b-PCL-b-PTFEMA-b-PDMAEMA), was synthesized via consecutive atom transfer radical polymerizations (ATRPs). The copolymers obtained were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectroscopy, respectively. The aggregation behaviors of the pentablock copolymers in aqueous solution with different pH (pH = 4.0, 7.0 and 8.5) were studied. Transmission electron microscopic images revealed that spherical micelles from self-assembly of the pentablock copolymer were prevalent in all cases. The mean diameters of these micelles increased from 34, 46, to 119 nm when the pH of the aqueous solution decreased from 8.5, 7.0, to 4.0, respectively.  相似文献   

12.
We have been able to prepare a molecular complex between the poly(ethylene oxide) block of a poly(ethylene)-b-poly(ethylene-alt-propylene)-b-poly(ethylene oxide) triblock copolymer and p-nitrophenol (PNP). The composition of the copolymer employed was: 24% PE, 57% PEP and 19% PEO in weight percent. The pure copolymer exhibited a non-conventional thermal behavior since the PEO block displayed a fractionated crystallization process during cooling. The PEO block/PNP complex did not show any apparent crystallization during cooling, instead cold crystallization during heating was observed and an approximately 30°C increase in melting point as compared to the neat PEO block within the copolymer. This caused an overlap in the melting regions of the PE block and the PEO block/PNP complex. The self-nucleation of the PE-b-PEP-b-PEO/PNP complex is very different from that of the neat triblock copolymer. An increased capacity for self-nucleation of the PEO block was produced by the complexation with PNP and therefore the three self-nucleation domains were clearly encountered for both the PE block and for the PEO block/PNP complex. Self-nucleation was able to show that the two crystallizable blocks can be self-nucleated and annealed in an independent way, thereby ascertaining the presence of separate crystalline regions in the triblock copolymer. Through the use of PNP, both the crystallinity and the melting point of the PE-b-PEP-b-PEO block copolymer employed here can be substantially increased. Similar results were obtained by complexation of the same ABC triblock copolymer with resorcinol.  相似文献   

13.
This study involves the investigation of the complexation ability of poly(2-[dimethylamino]ethyl methacrylate)-b-poly(hydroxypropyl methacrylate) (PDMAEMA-b-PHPMA) amphiphilic pH and thermoresponsive block copolymers, and their quaternized counterparts QPDMAEMA-b-PHPMA, toward short DNA in aqueous solutions. The PDMAEMA-b-PHPMA amphiphilic block copolymers present various self-assembly characteristics when inserted into aqueous media, depending on the composition, the solubilization protocol, the acidity and the temperature of the aqueous media. Copolymer aggregates-DNA interactions and nanostructure formation after complexation are investigated by dynamic light scattering and intensity measurements in aqueous solutions in a fixed temperature range, utilizing two different solubilization protocols for the copolymers. Ethidium bromide assays by fluorescence spectroscopy and ζ-potential measurements were also utilized to investigate the structure and properties of the DNA/copolymer polyplexes. The interpretation of such physicochemical characterization provides extra comprehension of the novel (Q)PDMAEMA-b-PHPMA copolymers self-assembly characteristics and assesses their ability for DNA complexation, stabilization, and delivery.  相似文献   

14.
This paper describes the synthesis and characterization of polystyrene-block-poly(2,2'-dimethyl-4,4'-biphenylene phenylterephthalate)-block-polystyrene and of poly(ethylene glycol)-black-poly(2,2'-dimethyl-4,4'-biphenylene phenylterephthalate)-block-poly (ethylene glycol) block copolymers. The ABA-triblock copolymers were synthesized by condensation reaction of telechelic poly(2,2'-dimethyl-4,4'-biphenylene phenylterephthalate) with ω-hydroxy polystyrene and ω-hydroxy poly(ethylene glycol) methyl ether of different molecular weights prepared by anionic polymerization. Some aspects of the liquid crystalline behavior and the phase transitions with respect to the block copolymer composition will be discussed.  相似文献   

15.
Complexation ability of poly(2-(dimethylamino)ethyl methacrylate)-b-poly(hydroxy propyl methacrylate) (PDMAEMA-b-PHPMA) amphiphilic doubly thermo-responsive block copolymers, and their quaternized counterparts QPDMAEMA-b-PHPMA, toward bovine serum albumin (BSA) is studied in aqueous solutions. The PDMAEMA-b-PHPMA amphiphilic block copolymers self-assemble in nanostructured aggregates with PDMAEMA coronas having different inner structure and micro-polarity depending on the solubilization protocol utilized when inserted in aqueous media. By incorporating different BSA concentrations, we investigate the copolymer–protein interactions by light scattering measurements in aqueous solutions in a broad temperature range, utilizing different solubilization protocols for the copolymers. Fluorescence spectroscopy and ζ-potential measurements were also utilized to investigate the structure and properties of the copolymer/protein complexes formed in each case. Such knowledge may lead to a better understanding of the inner structure and micro polarity of the nanostructured aggregates formed by the novel (Q)PDMAEMA-b-PHPMA copolymers, along with their potential abilities in nanocarrier formation, protein complexation, stabilization, and delivery.  相似文献   

16.
Biodegradable and amphiphilic diblock copolymers [polylactide-block-poly(ethylene glycol)] and triblock copolymers [polylactide-block-poly(ethylene glycol)-block-polylactide] were synthesized by the anionic ring-opening polymerization of lactides in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. The polymerization in toluene at room temperature was very fast, yielding copolymers of controlled molecular weights and tailored molecular architectures. The chemical structure of the copolymers was investigated with 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and differential scanning calorimetry investigations. The monomodal profile of the molecular weight distribution by gel permeation chromatography provided further evidence of block copolymer formation as well as the absence of cyclic species. Additional confirmation of the block copolymers was obtained by the substitution of 2-butanol for poly(ethylene glycol); butyl groups were clearly identified by 1H NMR as polymer chain end groups. The effects of the copolymer composition and lactide stereochemistry on the copolymer properties were examined. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2235–2245, 2007  相似文献   

17.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

18.
Atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) were combined to synthesize various polymers with various structures and composition. Poly(ε-caprolactone)-b-poly(n-octadecyl methacrylate), PCL-PODMA, was prepared using both sequential and simultaneous polymerization methods. Kinetic studies on the simultaneous process were performed to adjust the rate of both polymerizations. The influence of tin(II) 2-ethylhexanoate on ATRP was investigated, which led to development of new initiation methods for ATRP, i.e., activators (re)generated by electron transfer (AGET and ARGET). Additionally, block copolymers with two crystalizable blocks, poly(ε-caprolactone)-b-poly(n-butyl acrylate)-b-poly(n-octadecyl methacrylate), PCL-PBA-PODMA, block copolymers for potential surfactant applications poly(ε-caprolactone)-b-poly(n-octadecyl methacrylate-co-dimethylaminoethyl methacrylate), PCL-P(ODMA-co-DMAEMA), and a macromolecular brush, poly(hydroxyethyl methacrylate)-graft-poly(ε-caprolactone), PHEMA-graft-PCL, were prepared using combination of ATRP and ROP.  相似文献   

19.
Hierarchical mesostructures of poly(ε-caprolactone)-b-poly(ethylene oxide)-b-poly(ε-caprolactone) (PCL-PEO-PCL) triblock copolymers have been grown from evaporation-induced self-assembly directed by alkali metal ions. The self-assembly process began with a dilute homogeneous solution of the triblock copolymers in a mixture of tetrahydrofuran (THF) and water. THF preferentially evaporated under reduced pressure and induced the formation of amphiphilic polymer micelles. The spherical polymer micelles formed both in deionized water and NaOH aqueous solution. However, different mesostructures were discovered during the film depositing process for scanning electron microscopy observation. The polymer micelles were observed for the deposition sample in deionized water while sisal-like hierarchical mesostructures resulted from the film deposition of polymer micelles in NaOH aqueous solution. The sisal-like mesostructures and their formation process were observed through scanning electron microscopy, transmission electron microscopy, fluorescent microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Detailed study revealed that during evaporation-induced self-assembly of PCL-PEO-PCL amphiphilic triblock copolymer directed by alkali metal ions, the sodium ions and polymer micelles increasingly concentrated in NaOH aqueous solution and the solvent quality for the diblock progressively decreased, which resulted in the stronger coordination between alkali metal ions and PEO ligands in the block copolymer and PEO segment crystallization.  相似文献   

20.
Surfactant-free nanoparticles of methoxy poly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide-co-ɛ-caprolactone) diblock copolymers (MPEG-b-PDLLGCL) with different DLL:G:CL ratios were prepared by modified-spontaneous emulsification solvent diffusion method. Sizes of resulted colloidal nanoparticles obtained from light-scattering analysis were in the range of 121–132 nm with narrow size distribution. The nanoparticle sizes depended on the composition of the PDLLGCL block. Scanning electron microscopy demonstrated that the nanoparticles were aggregated after drying process, suggested they were soft nanoparticles. However, their initial aggregates can be observed and it was shown that the nanoparticles have spherical shape with smooth surface. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号