首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to achieve the successive synthesis of star-branched polymers, we have developed a new iterative methodology which involves only three sets of the reactions in each iterative process: (a) a coupling reaction of a living anionic polymer with 1,1-bis(3-chloromethylphenyl)ethylene to prepare a DPE-chain-functionalized polymer, (b) an addition reaction of sec-BuLi to the DPE-chain-functionalized polymer, followed by treatment with 1-(4-(4-bromobutyl)phenyl)-1-phenylethylene to prepare a new DPE-chain-functionalized polymer whose DPE is separated by four methylene units from the main chain, and (c) a coupling reaction of 1,1-bis(3-chloromethylphenyl)ethylene with the polymer anion derived from the newly prepared DPE-chain-functionalized polymer and sec-BuLi. With this methodology, a series of well-defined 4-arm, 8-arm, and 16-arm regular star-branched polystyrenes as well as 4-arm A2B2, 8-arm A4B4, and 16-arm A8B8 asymmetric star-branched polymers comprising polystyrene and poly(α-methylstyrene) segments have been successively synthesized.  相似文献   

2.
3.
A novel method is described for transforming an anionic polymerization process into a cationic polymerization process assisted by organosilyl groups. The reaction of the p‐tolyldimethylsilyl end group of polystyrene and trifluoromethanesulfonic acid produced a silyl triflate end group that served as a macroinitiator for the living cationic polymerization of isobutyl vinyl ether. The Si O linkage in the block copolymers underwent specific cleavage by reaction with tetrabutylammonium fluoride.

  相似文献   


4.
N‐Isopropyl‐4‐vinylbenzylamine (PVBA) was synthesized and used as an initiator for the polymerization of methacrylates to synthesize macromonomers with terminal styrenic moieties. LiPVBA initiated a living polymerization and block copolymerization of methyl methacrylate, 2‐(N,N‐dimethylamino)ethyl methacrylate and tert‐butyl methacrylate and produced polymers having well‐controlled molecular weights and very low polydispersities (w/n < 1.1) in quantitative yield. 1H NMR analysis revealed that the polymers contained terminal 4‐vinylbenzyl groups. The macromonomers were reactive in the copolymerization with styrene.  相似文献   

5.
Anionic polymerization of N-methacryloyl-2-methylaziridine ( 1 ) proceeded with 1,1-diphenyl-3-methylpentyllithium (DMPLi) in the presence of LiCl or Et2Zn to give the polymers possessing predicted molecular weights and narrow molecular weight distributions (Mw/Mn < 1.1) at −78 ∼ −40 °C in THF. In each polymerization initiated with DMPLi/LiCl at the various temperatures ranging from −40 to −60 °C, the linear relationship between polymerization time and conversion of monomer was obtained from the GLC analysis. The rate constant and the activation energy of the anionic polymerization for 1 were determined as follows: ln k = −5.85 × 103/T + 23.3 L mol−1 s−1 and 49 ± 4 kJ mol−1, respectively. Poly( 1 ) showed the glass transition temperature at 98 °C, and gave the insoluble product at higher temperature around 150 °C through the thermal cross-linking of highly strained N-acyl-aziridine moiety.  相似文献   

6.
Synthetic potential of the ligated anionic polymerization (LAP) of acrylic and metacrylic esters initiated with methyl 2-lithioisobutyrate (MIB-Li) in the presence of an excess of alkali metal tert-alkoxides (prevailingly Li tert-butoxide) is presented. tert-Alkoxides form with ester-enolates, like MIB-Li, cross-aggregates of various composition, which tailor the environment of growing chain-ends, lower their nucleophilicity and restrict in this way the extent of side reactions, in particular self-termination of growing macroanions by back-biting reaction. Thus, stability of polymethacrylate living chains is sufficiently high for methacrylate and acrylate block copolymers to be synthesized. In the case of acrylate polymerization, reaction conditions must be optimized due to their high tendency to self-termination.  相似文献   

7.
8.
By combining living anionic polymerization and hydrosilylation, densely grafted bottlebrush polymers with controlled spacing of branch points are prepared. Dimethyl(4‐vinylphenyl)silane and dimethyl(4‐(1‐phenylvinyl)phenyl)silane are anionically (co)polymerized to synthesize uniform, alternating, and gradient in‐chain silyl–hydride (Si–H) functionalized backbones. The spacing of branch points is controlled effectively by regulating the distribution of Si–H groups along the backbones. Three backbones with a similar number of Si–H groups but variable distributions are used to synthesize corresponding bottlebrush polymers via hydrosilylation between the backbones and chain‐end vinyl functionalized polystyrene. The uniformly grafted bottlebrush exhibits the highest hydrodynamic radius (Rh) of 5.6 nm and the lowest Tg of 79 °C which may be attributed to its compact grafted structure. This methodology exhibits high efficiency and convenience for the construction of bottlebrushes with controlled distribution of brushes.

  相似文献   


9.
The anionic polymerization of PPV via the sulfinyl precursor route is further investigated. When LHMDS is employed as the base to form the actively propagating quinodimethane system and THF as the solvent, anionic polymerizations can be observed. With the use of tert‐ butyl‐substituted anionic initiators, specific functional groups can be built in the polymer chain and the chain length can be efficiently controlled, which is demonstrated here for the first time. With introduction of branched side chains on the aromatic core, soluble conjugated PPV material can be obtained with molecular weights in the range of 5000–16 000 g mol−1.  相似文献   

10.
Living anionic polymerization of tert‐butyl acrylate initiated by 1,1‐diphenylhexyllithium is conducted in a flow microreactor system in the presence of lithium chloride. A high degree of control over the molecular weight distribution is achieved under easily accessible conditions, for example at ?20 °C. The subsequent reaction of a reactive polymer chain end with an alkyl methacrylate in an integrated flow micoreactor system leads to the formation of a block copolymer with a narrow molecular weight distribution.

  相似文献   


11.
Ferrocenylmethyl methacrylate (FMMA) is one of the very few metallocene‐based monomers that are promising candidates for truly living anionic polymerization. Nevertheless, FMMA homopolymers with a narrow polydispersity, or block copolymerization studies that result in satisfying blocking efficiencies, are unknown so far. Here we describe a procedure that leads to highly regular FMMA‐based polymers for the first time, characterized by polydispersity indices (PDI) of less that 1.05 and very high blocking efficiencies (>95%) in sequential copolymerization with styrene. Some of the obtained poly[styrene‐block‐(ferrocenylmethyl methacrylate)]s show unusual microphase morphologies, presumably the consequence of high Tgs causing ‘frustrated’ non‐equilibrium states.

  相似文献   


12.
戴李宗  傅暄 《应用化学》1999,16(2):14-17
以阴离子聚合法合成的窄分布聚苯乙烯(NDPS)进行氯甲基化后,再与由基团转移聚合法合成的活性聚甲基丙烯酸甲酯(PMMA)进行大分子反应,得到了主链为聚苯乙烯,支链为聚甲基丙烯酸甲酯的接枝共聚物(PStgPMMA);探讨了聚合物的合成条件,GPC测试结果表明,得到的接枝共聚物的分子量和设计分子量相近且主链和支链分子量均可较好的控制.利用扫描电镜、核磁和红外技术对PStgPMMA的形态、结构进行了表征.  相似文献   

13.
Summary: Control of the reactivity and selectivity of active species remains a major challenge in the course of living/controlled polymerizations of vinyl and heterocyclic monomers. We have found that alkyl metal derivatives such as dialkylmagnesium or trialkylaluminum derivatives or the corresponding alkoxyakyl metal derivatives, when added to conventional anionic polymerization systems, are very effective mediators for the controlled anionic polymerization of both styrenic and oxirane monomers. When used as additives to alkali metal alkyl initiators (alkyl lithium, alkyl sodium) for the styrene anionic polymerizations, they strongly retard the reactivity of the propagating species and allow controlling the polymerization in very unusual conditions (bulk, very high temperature). On the contrary, when used in combination to the same alkali metal based initiators for the anionic polymerization of ethylene oxide or propylene oxide, these additives can drastically enhance the reactivity and the selectivity of the propagating species allowing a fast living-like polymerization to proceed already at low temperature in hydrocarbon media.  相似文献   

14.
Two DendriMac polymers (Dendri‐hydr and Dendri‐click) are efficiently and conveniently synthesized via the combination of living anionic polymerization (LAP) and hydrosilylation/click chemistry. Based on the end‐capping of DPE derivatives (DPE‐SiH and DPE‐DA) toward polymeric anions, the polymeric core and arms are effectively synthesized, and the base polymers can be regarded as polymeric bricks. Hydrosilylation and click chemistry are used as coupling reactions to construct the DendriMac polymers with high efficiency and convenience. The numbers of branched arms are calculated by SEC as 5.84 and 6.08 for Dendri‐hydr and Dendri‐click, respectively, which indicate that the DendriMac architectures exhibit high structural integrity. Because of its independence, high efficiency, and convenience, the whole construction can be regarded as the “building of polymeric bricks.”

  相似文献   


15.
A switch from carbanions to aza‐anions is performed by the addition of N‐tosylaziridine (TAz) to living poly(styryl) (PS) chains. This is the first example of carbanionic aziridine ring‐opening which was previously activated by amidation with a tosyl group to enable nucleophilic ring‐opening by the living chain end. Poly(styrene)‐tosylaziridines (PSTAz) with narrow molecular weight distributions and variable molecular weights are synthesized. The removal of the tosyl group and subsequent functionalization is shown, evidencing quantitative transfer to azaanionic species. All polymers are characterized in detail by 1H NMR spectroscopy, DOSY 1H NMR spectroscopy, and size exclusion chromatography (SEC). This strategy allows the introduction of amine groups via anionic polymerization in analogy to the well‐established epoxide termination.

  相似文献   


16.
The living cationic polymerization of several functional monomers in the presence of an added base is investigated as a possible preparation of a new series of water-soluble or stimuli-responsive copolymers. Under appropriate conditions, the polymerization allows the selective preparation of polymers with various shapes and different sequence distributions of monomer units, including stimuli-responsive block copolymers, gradient copolymers, poly(vinyl alcohol) graft copolymers, and star-shaped polymers. The stimuli-induced self-association of the diblock copolymers is also examined. An aqueous solution of the diblock copolymer with a thermo-sensitive segment undergoes rapid physical gelation upon warming to the critical temperature to give a transparent gel, and returns sensitively to the solution state upon cooling. The sharp transition of stimuli-responsive segments with highly controlled primary structure turns out to play an important role in the self-association. Small-angle neutron scattering, dynamic light scattering, and electron microscopy studies reveal that the physical gelation involves a thermosensitive micellization of diblock copolymers (core size: 18-20 nm) and subsequent micelle macrolattice formation (bcc symmetry). Based on the gelation mechanism, several stimuli-responsive gelation systems are achieved using other stimuli such as the addition of a selective solvent or compound, cooling, pH change, and irradiation with ultraviolet light.  相似文献   

17.
The anionic polymerization behavior of 2‐methyl‐4‐phenyl‐1‐buten‐3‐yne (2) was investigated to get information on the effect of substituent at the 2‐position. The polymerization of 2 did not proceed in tetrahydrofuran at –78°C by lithium initiators, while sodium initiators can conduct the polymerization smoothly to give polymers consisting of a specific 1,2‐polymerized unit. The living nature of the polymerization of 2 by diphenylmethylsodium was supported by the post‐polymerization experiment.  相似文献   

18.
This paper reviews the precise synthesis of many‐armed and multi‐compositional star‐branched polymers, exact graft (co)polymers, and structurally well‐defined dendrimer‐like star‐branched polymers, which are synthetically difficult, by a commonly‐featured iterative methodology combining living anionic polymerization with branched reactions to design branched polymers. The methodology basically involves only two synthetic steps; (a) preparation of a polymeric building block corresponding to each branched polymer and (b) connection of the resulting building unit to another unit. The synthetic steps were repeated in a stepwise fashion several times to successively synthesize a series of well‐defined target branched polymers.

  相似文献   


19.
含糖聚合物可控合成研究进展   总被引:3,自引:0,他引:3  
田静  万灵书  徐志康 《化学通报》2008,71(2):102-109
活性聚合技术的进步,使设计合成结构可控的含糖聚合物成为可能.本文介绍了阴离子聚合、阳离子聚合、原子转移自由基聚合、可逆加成断裂链转移聚合、硝基氧介导聚合、开环聚合和开环易位聚合等一系列可控/"活性"聚合技术在合成含糖聚合物中的应用,并对这一领域所取得的研究进展及现状进行了综述.  相似文献   

20.
Anionic polymerization of methacrylates under sterically confined environment in a spherical beads‐shaped networked polystyrene (NwPS) matrix is described. The initiator used herein is a samarium (Sm) (III) enolate, which was formed by treatment of 2‐bromoisobutylate immobilized in the side chain of NwPS with Sm (II) iodide. By using this NwPS‐bound initiator, polymerization of a series of methacrylates (=solid‐supported polymerization) was studied to find its two aspects: (1) In the early stages, the rate constant for each methacrylate was comparable to that for its conventional solution‐phase polymerization using a Sm (III) enolate, suggesting that methacrylate can be efficiently supplied to the propagating end by its free permeation without any interference by the networked structure of the matrix. (2) After the early stages, the rate constant decreased remarkably, implying that permeation of methacrylate was sterically interfered by the formed poly(methacrylate) that filled the confined space in NwPS, as supported by a SEM image of the resulting beads, of which pores were filled with the formed polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1510–1521, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号