首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
The structure–property relationships of isotactic polypropylene (iPP)/styrenic block copolymer blends filled with talc were examined by optical and scanning electron microscopy, wide‐angle X‐ray diffraction, and tensile‐ and impact strength measurements. The composites were analyzed as a function of the poly(styrene‐b‐ethylene‐co‐propylene) diblock copolymer (SEP) and the poly(styrene‐b‐butadiene‐b‐styrene) triblock copolymer (SBS) content in the range from 0 to 20 vol % as elastomeric components and with 12 vol % of aminosilane surface‐treated talc as a filler. Talc crystals incorporated in the iPP matrix accommodated mostly plane‐parallel to the surface of the samples and strongly affected the crystallization process of the iPP matrix. The SBS block copolymer disoriented plane‐parallel talc crystals more significantly than the SEP block copolymer. The mechanical properties depended on the final phase morphology of the investigated iPP blends and composites and supermolecular structure of the iPP matrix because of the interactivity between their components. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1255–1264, 2004  相似文献   

2.
In this work, gradient materials with low electrical resistivity were prepared by compounding isotactic polypropylene (iPP)/high density polyethylene (HDPE) blends with carbon black (CB) through extruding and injection molding. Contact angle measurements and morphology measurements showed that the CB particles were selectively located in HDPE phase and the final composites had a gradient structure that the HDPE/CB phase exhibited different morphologies in the skin layer and core layer of the composites under different processing procedures. The main factors influencing the formation of the functional gradient materials (FGM), including screw speed during extruding, iPP types and CB contents were discussed. They affect the phase morphology by shear stress, the restoration of HDPE phase, and the viscosity ratio of polymer blends, respectively. In conclusion, iPP/HDPE/CB FGM could be formed easily in the composites blending with the iPP type with narrow molecular weight distribution (MWD) and higher CB content extruded at higher screw speed. The electrical properties of iPP/HDPE/CB composites were studied and the results showed that screw speed in extrusion significantly influenced the percolation curve and electrical property of the final composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In order to promote better understanding of the structure‐mechanical properties relationships of filled thermoplastic compounds, the molecular orientation and the degree of crystallinity of injection molded talc‐filled isotactic polypropylene (PP) composites were investigated by X‐ray pole figures and wide‐angle X‐ray diffraction (WAXD). The usual orientation of the filler particles, where the plate planes of talc particles are oriented parallel to the surface of injection molding and influence the orientation of the α‐PP crystallites was observed. The PP crystallites show bimodal orientation in which the c‐ and a*‐axes are mixed oriented to the longitudinal direction (LD) and the b‐axis is oriented to the normal direction (ND). It was found that the preferential b‐axis orientation of PP crystallites increases significantly in the presence of talc particles up to 20 wt% in the composites and then levels‐off at higher filler content. WAXD measurements of the degree of crystallinity through the thickness of injection molded PP/talc composites indicated an increasing gradient of PP matrix crystallinity content from the core to the skin layers of the molded plaques. Also, the bulk PP crystallinity content of the composites, as determined by DSC measurements, increased with talc filler concentration. The bulk crystallinity content of PP matrix and the orientation behavior of the matrix PP crystallites and that of the talc particles in composites are influenced by the presence of the filler content and these three composite's microstructure modification factors influence significantly the flexural moduli and the mechanical stiffness anisotropy data (ELD/ETD) of the analyzed PP/talc composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Talc-loaded isotactic polypropylene (iPP) composites with various contents of talc were fabricated by compression molding, following slow- and fast-cooling processes, to obtain slow-cooled samples (SCS) and fast-cooled samples (FCS), respectively. Lamellar thickness of the α-crystal of iPP in the SCS is observed to be larger than that in the FCS by X-ray diffraction study. Rolled fast-cooled samples (RFCS) were also prepared at 25 °C in order to examine the crystal growth of iPP. An epitaxial growth mechanism of the α-crystal of iPP from the talc crystal is proposed. Surface of talc-loaded FCS appears with a smaller particle size than that of talc-loaded SCS and RFCS as observed by a scanning electron microscope. Young’s modulus and tangent modulus of FCS are found lower than those of SCS with the addition of talc up to 20 wt% and higher above this concentration, except microhardness which is higher in SCS at all contents of talc. From thermal studies, talc-loaded SCS and FCS are found to show higher melting temperature than the neat samples. Effect of cooling and rolling on the structures and properties of the fabricated composites are elaborately discussed.  相似文献   

5.
In this work, changes in structure and physical properties of stabilized isotactic polypropylene (iPP) were created by gamma irradiation, up to a dose of 700 kGy, in different media: air, deionised distilled (DD) water and acetylene. Gel and infrared (IR) spectroscopy measurements were used to determine the changes in the degree of network formation and oxidative degradation, respectively. Sol-gel analysis was studied in detail using the Charlesby-Pinner (C-P) equation. The radiation-induced changes in the structure and evolution of oxygen-containing species were also studied through dielectric loss (tan δ) analysis in a wide temperature and/or frequency range. Evolution of low temperature dielectric relaxations with gamma irradiation was investigated. In the case of dielectric relaxation measurements, the polar groups that were introduced by irradiation in non-polar iPP were considered as tracer groups. Conclusions derived according to different methods were compared.  相似文献   

6.
Radiation crosslinking is generally used to improve the thermo-mechanical properties of the composites. A study has been carried out to investigate the effect of gamma radiation on the thermo-mechanical properties of linear low density polyethylene containing magnesium hydroxide (MH) and sepiolite (SP) as non-halogenated flame retardant additives. The developed composites are irradiated at different doses upto maximum of 150 kGy. Infrared spectra of the irradiated composites reveal the reduction in the intensity of O-H band with increase in the absorbed doses, thus indicates a distinct structural change in MH at higher doses. The thermogravimetric analysis results of unirradiated and composites irradiated at low doses (≤75 kGy) show two steps weight loss, which is changed to single step at higher doses with lower thermal stability. The melting temperature (Tm) and crystallization temperature (Tc) of irradiated composites are lowered with irradiation whereas Vicat softening temperature (VST) is increased. The increasing trend in gel content with increase in the absorbed dose confirms the presence of crosslinked network. The mechanical properties, results show significant improvement in the modulus of irradiated composites. The results also confirm that MH gradually loses its OH functionality with irradiation.  相似文献   

7.
The effects of the addition of diblock copolymer poly(styrene‐b‐ethylene‐co‐propylene) (SEP) to isotactic polypropylene (iPP) on the morphology and mechanical properties were investigated. Phase morphologies of iPP/SEP blends up to a 70/30 weight ratio, prepared in Brabender Plasticoder, were studied with optical microscopy, scanning electron microscopy, transmission electron microscopy, and wide‐angle X‐ray diffraction. The addition of 2.5 wt % SEP caused a nucleation effect (by decreasing the crystallite and spherulite size) and randomization of the crystallites. With further SEP addition, the crystallite and spherulite size increased because of prolonged solidification and crystallization and achieved the maximum in the 80/20 iPP/SEP blend. This maximum was a result of the appearance of β spherulites and the presence of mixed α spherulites in the 80/20 iPP/SEP blend. Dispersed SEP particles were irregular and elongated clusters consisting of oval and spherical core–shell microdomains or SEP micelles. SEP clusters accommodated their shapes to interlamellar and interspherulitic regions, which enabled a well‐developed spherulitization even in the 70/30 iPP/SEP blend. The addition of SEP decreased the yield stress, elongation at yield, and Young's modulus but significantly improved the notched impact strength with respect to the strength of pure iPP at room temperature. Some theoretical models for the determination of Young's modulus of iPP/SEP blends were applied for a comparison with the experimental results. The experimental line was closest to the Takayanagi series model. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 566–580, 2001  相似文献   

8.
The degradation of high molecular weight isotactic polypropylene (iPP) subjected to gamma rays irradiation up to 100 kGy in inert atmosphere was analyzed. The investigation relied upon complex viscosity, elastic modulus, gel fraction, morphology of the insoluble fraction and deconvoluted molecular weight distribution (MWD) curves. At low irradiation doses, already at 5 kGy, the MWD curve is strongly shifted to the low molecular weight side showing chain scission, which is confirmed using the calculated chain scission distribution function (CSDF). At high dose levels, the appearance of a shoulder in the high molecular weight side of the MWD curve indicates the formation of chain branching. The presence of a considerable insoluble fraction at these high dose levels indicates also the formation of cross-linking, which has different morphology then the insoluble fraction present in the original iPP. The rheological results show changes in the molecular structure of irradiated samples in agreement with the gel content data. The chromatographic and rheological data has shown that gamma irradiation of iPP produces chain scission, branching and cross-linking.  相似文献   

9.
The in situ microfibrillar blend of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) was fabricated through a slit die extrusion, hot stretch, and quenching process. The morphological observation indicates that while the unstretched blend appears to be a common incompatible morphology, the hot stretched blends present PET in situ fibers whose characteristics, such as diameter and aspect ratio, are dependent on the hot stretching ratio (HSR). When the HSR is low, the elongated dispersed phase particles are not uniform at all. As the HSR is increased to 16.1, well‐defined PET microfibers were generated in situ, whose diameter is rather uniform and is around 0.6 ~ 0.9 μm. The presence of the PET phase shows significant nucleation ability for crystallization of iPP. Higher HSR corresponds to faster crystallization of the iPP matrix, while as HSR is high up to a certain level, its variation has little influence on the onset and maximum crystallization temperatures of the iPP matrix during cooling from melt. Optical microscopy observation reveals that transcrystalline layers form in the microfibrillar blend, in which the PET microfibers play as the center row nuclei. In the as‐stretched microfibrillar blends, small‐angle X‐ray scattering measurements show that matrix iPP lamellar crystals have the same orientation as PET lamella. The long period of lamellar crystals of iPP is not affected by the presence of PET micofibers. Wide‐angle X‐ray scattering reveals that the β phase of iPP is obtained in the as‐stretched blends, whose concentration increases with the increase of the HSR. This suggests that finer PET microfibers can promote the occurrence of the β phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4095–4106, 2004  相似文献   

10.
The results are given on the effect of γ‐irradiation on properties of blends of high and low‐density polyethylene (HDPE, LDPE) with elastomers ‐ethylene/propylene/diene rubber (EPDM) and chlorinated polyethylene (CPE), and thermotropic liquid crystalline polymer (LCP). The morphological, thermal, mechanical properties (including thermosetting properties) and adhesion properties of blended composites were investigated. A special attention was paid to the applicability of the blends as thermosetting materials (TSM). The LCP used was a copolyester of poly(ethylene terephthalate) with p‐(hydroxybenzoic acid) in the ratio 40 : 60. It was found that addition of LCP essentially influenced the thermomechanical and adhesion properties of PE composites, irradiated up to the absorbed dose 150 kGy, as well as the dimensional stability of thermosetting products, made from polyethylene/elastomer mixtures. The results show that such ternary blends considerably improve the exploitation conditions of irradiated polyethylene and useful thermosetting materials can be obtained.  相似文献   

11.
Several blends, covering the entire range of compositions, of a metallocenic ethylene‐1‐octene copolymer (CEO) with a multiphasic block copolymer, propylene‐b‐(ethylene‐co‐propylene) (CPE) [composed of semicrystalline isotactic polypropylene (iPP) and amorphous ethylene‐co‐propylene segments], have been prepared and analyzed by differential scanning calorimetry, X‐ray diffraction, optical microscopy, stress‐strain and microhardness measurements, and dynamic mechanical thermal analysis. The results show that for high CEO contents, the crystallization of the iPP component is inhibited and slowed down in such a way that it crystallizes at much lower temperatures, simultaneously with the crystallization of the CEO crystals. The mechanical results suggest very clearly the toughening effect of CEO as its content increases in the blends, although it is accompanied by a decrease in stiffness. The analysis of the viscoelastic relaxations displays, first, the glass transition of the amorphous blocks of CPE appearing at around 223 K, which is responsible for the initial toughening of the plain CPE copolymer in relation to iPP homopolymer. Moreover, the additional toughening due to the addition of CEO in the blends is explained by the presence of the β relaxation of CEO that appears at about 223 K. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1869–1880, 2002  相似文献   

12.
In this work, a considerable low‐temperature toughness enhancement of isotactic polypropylene (iPP) was achieved by adding 30 wt% ethylene propylene diene monomer rubber (EPDM) as well as traces of β‐nucleating agent (β‐NAs) and carbon nanotubes (CNTs). The impact strength of the iPP/30 wt% EPDM blend with 0.1 wt% β‐NAs reached 6.57 kJ/m2 at ?20°C, over 2.5 times of pure iPP. A slightly improved impact strength was further found in the β‐nucleated iPP/30 wt% EPDM at the presence of 0.05 wt% CNTs. The presence of traces of CNTs, β‐NAs, and EPDM displayed synergistic low‐temperature toughness reinforcement effect on the iPP blends. The underlying toughening mechanism was attributed to the formation of a great amount of voids and plastic deformation of iPP matrix affected by CNTs, β‐NAs, and EPDM. Our work provided a feasible strategy to significantly increase the low‐temperature toughness of iPP.  相似文献   

13.
Supermolecular structure and phase morphology of the ternary isotactic polypropylene/atactic polystyrene/poly(styrene-b-ethylene-co-propylene) (iPP/aPS/SEP) compression molded blends with 100/0, 90/10, 70/30, and 50/50 iPP/aPS weight ratios and with different amounts of added SEP compatibilizer were studied by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). SEP significantly reduced the size of dispersed aPS particles that enabled better spherulitization in the iPP matrix. Furthermore, iPP spherulites in ternary blends with 90/10 iPP/aPS weight ratio became larger in comparison with the pure iPP. TEM revealed that the SEP formed continuous interface layer around the dispersed aPS particles even when only 2.5 wt.% of SEP was added. Particle size distribution was distinctly bimodal. When the SEP content was increased to 10 wt.%, joining together smaller and bigger aPS and SEP particles formed dispersed aggregates. Additionally, both amorphous components (aPS and SEP) influenced crystallization process of iPP matrix and so modified, to some extent, its final supermolecular structure. SEP compatibilizer did not significantly affect crystallite orientation. The increase of crystallite sizes, which was more affected by the addition of aPS than by the addition of SEP, seemed to be influenced by the solidification effect rather than by the phase morphology of the blends.  相似文献   

14.
研究了两种马来酸酐接枝聚丙烯(PP-g-MAH)在不同含量时对聚丙烯(PP)/滑石粉复合材料的力学性能、雾化性能和线性膨胀系数的影响.结果表明,接枝物的加入能提高复合材料的拉伸性能、冲击性能和弯曲性能,但随着含量的增加拉伸强度、冲击强度和弯曲强度及弯曲模量有所降低.在含量相同时,接枝物1对冷凝组份的影响更小.复合材料的线性膨胀系数随接枝物含量的增加先减小后增加.  相似文献   

15.
This paper presents a study of the influence of structural peculiarities, uniaxial orientation and fibrillar structure on the radiation-induced changes in iPP. For the purposes of this study, iPP was oriented via solid-state stretching at elevated temperature to various draw ratios and, later on, gamma irradiated in air. In order to investigate orientation- and/or radiation-induced structural changes, optical microscopy (OM), scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), infrared spectroscopy (IR) and gel measurements were employed. To quantify the degree of molecular orientation, Herman’s orientation function (fc), was used. IR spectroscopy and gel measurements were used to determine the changes in the oxidative degradation and degree of network formation, respectively. Sol-gel analysis was studied in detail using the Charlesby-Pinner (C-P) equation. The radiation-induced changes in the structure and evolution of oxygen-containing species were also studied through dielectric loss (tan δ) analysis in a wide frequency range; the polar groups that were introduced by irradiation in apolar iPP were considered as tracer groups. Conclusions derived according to different methods were compared. Presented results reveal two different radiation-induced dynamics; gamma irradiation of initial and fully developed fibrillar iPP structures leads to significantly different crosslinking and/or oxidation response.  相似文献   

16.
Blends of isotactic polypropylene and polyamide‐6/clay nanocomposites (iPP/NPA6) were prepared with an internal batch mixer. A high content of the β‐crystalline form of isotactic polypropylene (β‐iPP) was observed in the injection‐molded samples of the iPP/NPA6 blends, whereas the content of β‐iPP in the iPP/PA6 blends and the iPP/clay composite was low and similar to that of neat iPP. Quiescent melt crystallization was studied by means of wide‐angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscopy. We found that the significant β‐iPP is not formed during quiescent melt crystallization regardless of whether the sample used was the iPP/NPA6 blend or an NPA6 fiber/iPP composite. Further characterization of the injection‐molded iPP/NPA6 revealed a shear‐induced skin–core distribution of β‐iPP and the formation of β‐iPP in the iPP/NPA6 blends is related to the shear flow field during cavity‐filling. In the presence of clay, the deformation ability of the NPA6 domain is decreased, as evidenced by rheological and morphological studies. It is reasonable that the enhanced relative shear, caused by low deformability of the NPA6 domain in the iPP matrix, is responsible for β‐iPP formation in the iPP/NPA6 blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3428–3438, 2004  相似文献   

17.
利用凝胶渗透色谱(GPC)、傅里叶变换红外光谱(FTIR)和示差扫描量热(DSC)等手段对不同剂量γ射线辐照后等规聚丙烯(iPP)的分子链结构及结晶行为的变化进行了研究.结果表明,γ射线辐照使iPP的分子量下降,并在其分子链中产生羟基和羰基等极性基团,从而影响其结晶行为.在非等温结晶过程中,当辐照剂量≤50 kGy时,iPP的热结晶温度略有升高;增大辐照剂量,iPP的热结晶温度明显降低.iPP的熔融温度则随辐照剂量的增大而降低,且分裂成双峰.利用Avrami方程研究了辐照前后iPP的等温结晶动力学,发现辐照前后样品的Avrami指数n都在3左右,表明iPP的结晶遵循异相成核机理,且不受辐照剂量和等温结晶温度的影响,但总结晶速率随等温结晶温度和辐照剂量的升高而逐渐减小.探讨了iPP经过γ射线辐照后,分子链断裂、链结构变化和结晶速率之间的关系.  相似文献   

18.
The kinetics of a nonisothermal crystallization and melting of irradiated with dose of 6 Mrad blends of an ultra-high molecular-weight polyethylene (UHMWPE) and a high-density polyethylene with normal molecular weight (NMWPE) is investigated by means of DSC. The blends have been prepared at temperature below the flow temperature of UHMWPE: The enthalpies of melting of the polyethylenes increase, while those of their blends decrease after irradiation. The enthalpies of crystallization of the pure polyethylenes are higher, while those of their blends almost do not change or are a bit higher after irradiation. The rates of a nonisothermal crystallization and melting of the polyethylenes increase, while those of the polyethylenes in the blends decrease after irradiation. Thermomechanical measurements under constant load in wide-temperature interval of irradiated polyethylenes and their blends have been made. A high-elastic plateau in viscous-liquid state is established on the thermomechanical curves of UHMWPE, and the blends with high content of UHMWPE. On the basis of results obtained assumptions have been made about the processes taking place in the blends under the action of irradiation, as well as about the character of the mutual influence between the components in the process of irradiation.  相似文献   

19.
In previous studies, we found that Young's moduli of quenched isotactic polypropylene/high‐density polyethylene (iPP/HDPE) exceeded the upper bound, calculated from the Voigt model, with the moduli of the quenched homopolymers as those of the two components. We suggested that this might be due to crystallization, as the components crystallized at higher temperatures in the blend than on their own. We repeated the same set of measurements, this time on iPP/HDPE blends that were cooled slowly. We also examined crystallization at various rates of cooling with differential scanning calorimetry. At slow cooling rates, the HDPE and iPP components in the blends crystallize at lower temperatures than in the pure homopolymers, suggesting that the presence of one component inhibits rather than promotes the crystallization of the other. Electron microscopy of slowly cooled blends revealed very different interfacial morphologies depending on whether the HDPE or the iPP crystallizes first. Young's moduli of most of the blends lie on the upper bound; however, some blends with co‐continuous morphologies fall well below the lower bound. The mechanical properties are discussed in terms of the interfacial morphology, the crystallization behavior, and the large‐scale phase separation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1384–1392, 2003  相似文献   

20.
The surface compositions and morphologies of melt‐quenched blends of isotactic polypropylene (iPP) with aspecific poly(ethylene‐co‐propylene) rubber (aEPR) were characterized by atomic force microscopy, optical microscopy, and X‐ray photoelectron spectroscopy. The surface morphologies and compositions formed in the melt are frozen‐in by crystallization of the iPP component and, depending on the processing conditions, are enriched in iPP or aEPR or contain a phase‐separated mix of iPP and aEPR. Enrichment of iPP is observed for blends melted in open air, in agreement with earlier work showing the high surface activity of atactic polypropylene at open interfaces. Surface segregation of iPP is suppressed at confined interfaces. Blends melt‐pressed between hydrophilic and hydrophobic substrates have phase‐separated iPP and aEPR domains present at the surface, which grow in size as the melt time increases. Surface enrichment of aEPR is observed after exposing melt‐pressed blends to n‐hexane vapor, which preferentially solvates aEPR and draws it to the surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 421–432, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号