首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
康朝阳  唐军  李利民  闫文盛  徐彭寿  韦世强 《物理学报》2012,61(3):37302-037302
在分子束外延(MBE)设备中,利用直接沉积C原子的方法在覆盖有SiO2的Si衬底(SiO2/Si)上生长石墨烯,并通过Raman光谱和近边X射线吸收精细结构谱等实验技术对不同衬底温度(500℃,600℃,700℃,900℃,1100℃,1200℃)生长的薄膜进行结构表征.实验结果表明,在衬底温度较低时生长的薄膜是无定形碳,在衬底温度高于700℃时薄膜具有石墨烯的特征,而且石墨烯的结晶质量随着衬底温度的升高而改善,但过高的衬底温度会使石墨烯质量降低.衬底温度为1100℃时结晶质量最好.衬底温度较低时C原子活性较低,难以形成有序的C-sp2六方环.而衬底温度过高时(1200℃),衬底表面部分SiO2分解,C原子与表面的Si原子或者O原子结合而阻止石墨烯的形成,并产生表面缺陷导致石墨烯结晶变差.  相似文献   

2.
本文利用程序升温脱附技术(TPD)研究了乙醛吸附在锐钛矿型TiO2(001)-(1×4)表面的化学性质. 实验结果表明完整晶格位点对乙醛反应表现极为惰性,而表面上的还原型缺陷位点在热驱动下可有效地使乙醛分子通过碳-碳偶联反应生成2-丁酮和丁烯. 提出了乙醛在锐钛矿型TiO2(001)-(1×4)表面偶联反应主要是通过表面还原型缺陷位吸附成对的乙醛分子,因为表面已有的钛原子对还原型缺陷为乙醛分子提供了合适的吸附位点.  相似文献   

3.
Ag3PO4/Ag/Ag2Mo2O7 composite photocatalyst was successfully prepared via an in situ precipitation method. The as-prepared Ag3PO4/Ag/Ag2Mo2O7 nanocomposite included Ag3PO4 nanoparticles (NPs) as well as Ag NPs assembling on the surface of Ag2Mo2O7 nanowires. Under visible light irradiation (λ>420 nm), the Ag3PO4/Ag/Ag2Mo2O7 composite degraded rhodamine B (Rh B) efficiently and showed much higher photocatalytic efficiency than pure Ag3PO4, Ag2Mo2O7, or Ag3PO4/Ag2Mo2O7. It was elucidated that the excellent photocatalytic performance of Ag3PO4/Ag/Ag2Mo2O7 for the degradation of Rh B under visible light could be ascribed to the high specific surface area, the extended absorption in the visible light region resulting from the Ag3PO4/Ag loading, and the efficient separation of photogenerated electrons and holes through the ternary heterostrucure composed of Ag3PO4, Ag and Ag2Mo2O7.  相似文献   

4.
Cr2O3是双功能催化合成气转化的重要氧化物组分,其可将合成气转化为重要的中间物种甲醇. 结合密度泛函理论计算和微观动力学模拟,本文系统研究了干净Cr2O3(001)和(012)表面,以及氢覆盖或含有氧空位的还原(012)表面的结构及催化合成气转化至甲醇的活性. 本文探讨了合成气转化为甲醇的分步或协同反应路径,并确定CO或CHO氢化是决速步骤. 微观动力学分析表明,Cr2O3(001)表面难以催化合成气转化为甲醇,在673 K 时,两个还原性(012)表面的反应速率(25∽28 s-1)比干净的(012)表面(4.3 s-1)高出约五倍. 计算结果表明了Cr2O3表面还原性对催化活性的重要性,或许可以为双功能催化体系中氧化物组分的设计提供参考.  相似文献   

5.
钼团簇因具有独特的结构、电子和物理化学性质,被期待在未来的纳米科技中扮演重要角色,但是它们的基态结构至今还存在争议. 本研究采用粒子群优化(CALYPSO)方法对Mon (n=2∽18)团簇的晶体结构进行全局域能量最小化搜索,并结合第一性原理方法进一步优化. 计算表明:当4s和4p半核态不作为价态时,Mon (n=2∽18)团簇有明显的二聚体趋势,原子数为偶数的团簇往往是“幻数”团簇,具有较高的稳定性;但是,将4s和4p电子作为价电子后,平均杂化指数HspHsdHpd显著降低,二聚体趋势急剧减弱. 本文报道了Mon(n=11,14,15)团簇的新基态结构,证明了半核态对于Mon团簇是十分重要的.  相似文献   

6.
采用广义梯度近似GGA,修正Perdew-Burke-Ernzerhof交换-关联泛函,以及周期性切片模型对O2、CO2和H2O在UN(001)表面的化学吸附行为进行非自旋极化水平的密度泛函理论计算. 在四个对称性化学位置条件下,对化学吸附能与分子和UN(001)表面之间距离的关系曲线进行优化. 结果表明O2、CO2和H2O分子的最稳定吸附位置分别为桥式平行、空心平行和桥式H  相似文献   

7.
通过高分辨的扫描隧道显微术研究并比较了金红石型TiO2(110)-(1×1)和锐钛矿型TiO2(001)-(1×4)两种表面的活性位点. 在金红石型TiO2(110)-(1×1)表面, 观察到氧空位缺陷是O2和CO2分子的活性吸附位点,而五配位的Ti原子是水分子和甲醇分子的光催化反应活性位点.在锐钛矿型TiO2(001)-(1×4)表面,观察到完全氧化的表面,Ti原子更可能是六配位的,H2O和O2分子均不易在这些Ti原子上吸附.经还原后表面出现富Ti的缺陷位点, 这些缺陷位点对H2O和O2分子表现出明显的活性. 锐钛矿型TiO2(001)-(1×4)表面的吸附和反应活性并不具有很高的活性,某种程度上其表现出的活性似乎低于金红石型TiO2(110)-(1×1)表面.  相似文献   

8.
钙钛矿层的品质极大影响钙钛矿太阳能电池性能. 然而,在溶液法生成多晶钙钛矿膜过程中会不可避免地形成缺陷和陷阱位. 通过在钙钛矿层中嵌入添加物改善钙钛矿晶化,用于减少和钝化缺陷是非常重要的. 本文合成一种环境友好的二维纳米材料质子化石墨相氮化碳(p-g-C3N4),并掺杂于碳基钙太阳能电池的钙钛矿层中. 实验证明,在钙钛矿前驱体溶液中添加p-g-C3N4不仅能调解碘铅甲胺(MAPbI3)结晶的成核和生长速率,获得大晶粒尺寸的平滑表面,还能减少钙钛矿层的本征缺陷. 质子化过程在氮化碳表面引入活性基团-NH2/-NH3,它们和钙钛矿晶体表面N-H键发生强化学作用,有效地钝化电子陷阱,提高钙钛矿结晶质量. 结果表明,与不掺杂的对照电池(效率为4.48%)和掺杂石墨相氮化碳(g-C3N4)电池(效率为5.93%)相比,掺杂质子化石墨相氮化碳(p-g-C3N4)的电池获得了6.61%的较高效率. 本工作展示了一种通过掺杂改性添加物改善钙钛矿膜的简单方法,为碳基钙钛矿太阳能电池的低成本制备提供了建议.  相似文献   

9.
采用溶胶凝胶法与等体积浸渍相结合制备了一系列以粘土为载体的K-Co-Mo催化剂. 采用XRD、N2等温吸脱附、H26+的还原,但对Mo4+和Co2+的还原没有明显的影响. 催化剂经还原后,在其表面生成了一种更低价态的Moδ+(1<δ<4)物种,被认为是合成醇的活性中心. 与非负载催化剂相比,粘土担载的K-Co-Mo具有更高的合成醇性能. 负载型催化剂具有较高的活性物种分散度,并且其介孔结构在一定程度上延长了合成醇反应中间体的滞留时间,从而促进了低碳醇的生成. 经773 K还原的催化剂具有较高的活性,其原因可为催化剂表面具有较高含量的Moδ+物种.  相似文献   

10.
张兵坡  蔡春锋  才玺坤  吴惠桢  王淼 《物理学报》2012,61(4):46802-046802
本文采用分子束外延(MBE)方法在BaF2衬底上直接外延生长了CdTe(111)薄膜. 反射高能电子衍射(RHEED)实时监控生长表面, 衍射图样揭示了CdTe(111)在BaF2表面由二维生长向三维生长的变化过程.XRD表征验证了外延生长的CdTe薄膜的单晶性质.由红外透射光谱测量和理论拟合相结合, 得到了CdTe外延薄膜室温带隙宽度Eg=1.511 eV.  相似文献   

11.
The saddle field fast atom beam sputtered (ABS) 50 nm thick molybdenum carbide (Mo2C) films as a diffusion barrier for copper metallization were investigated. To study the diffusion barrier properties of Mo2C films, the as-deposited and annealed samples were characterized using four probes, X-ray diffraction, field enhanced scanning electron microscopy, energy dispersive X-ray analysis, atomic force microscopy and Rutherford back scattering techniques. The amorphous structure of the barrier films along with presence of carbon atoms at the molybdenum carbide-silicon interface is understood to reduce effective grain boundaries and responsible for increased thermal stability of Cu/Mo2C/Si structure. The lowest resistivity of the as-deposited molybdenum carbide barrier films was ∼29 μΩ cm. The low carbon containing molybdenum carbide was found thermally stable up to 700 °C, therefore can potentially be used as a diffusion barrier for copper metallization.  相似文献   

12.
We present our first-principles calculation of the adsorption and diffusion of a carbon adatom on the H-terminated and clean Ge(110) surfaces, which are essential processes in the nucleation and growth of a monolayer graphene on Ge(110) by chemical vapor deposition. On the H-terminated surface, the C adatom spontaneously substitutes H atom(s) to form a monohydride structure (CH) or a dihydride structure (CH2) and makes direct bonds with the substrate Ge atoms. The resulting diffusion barriers of the C adatom are 2.67 and 6.45 eV parallel to and perpendicular to the zigzag Ge chains of the surface, respectively. On the clean surface, the C adatom embeds into the zigzag Ge chain with nearly no barrier, kicking out a Ge atom out of the chain at the same time. The kicked-out Ge atom, instead of the C adatom, becomes a diffusion species with the barrier less than 0.63 eV. The formation of the C composite structures makes the C adatom difficult to diffuse both on the H-terminated and clean Ge(110) surfaces, which suggests that the nucleation and growth of the graphene islands from C seeds is much suppressed. We propose a growth mechanism of graphene monolayer going round the diffusion of the C adatoms on the Ge(110) surfaces.  相似文献   

13.
In this work we investigate the diffusion and precipitation of supersaturated substitutional carbon in 200-nm-thick SiGeC layers buried under a silicon cap layer of 40 nm. The samples were annealed in either inert (N2) or oxidizing (O2) ambient at 850 °C for times ranging from 2 to 10 h. The silicon self-interstitial (I) flux coming from the surface under oxidation enhances the C diffusion with respect to the N2-annealed samples. In the early stages of the oxidation process, the loss of C from the SiGeC layer by diffusion across the layer/cap interface dominates. This phenomenon saturates after an initial period (2–4 h), which depends on the C concentration. This saturation is due to the formation and growth of C-containing precipitates that are promoted by the I injection and act as a sink for mobile C atoms. The influence of carbon concentration on the competition between precipitation and diffusion is discussed. Received: 19 October 2001 / Accepted: 19 December 2001 / Published online: 20 March 2002 / Published online: 20 March 2002  相似文献   

14.
The structural and chemisorptive properties of the stepped, non-unique, (101&#x0304;2) surface of cobalt have been investigated by standard LEED/Auger/Δφ/thermal desorption methods. The clean surface is well-ordered, unreconstructed, and reversibly undergoes the predicted structural changes on cycling through the phase transition. CO chemisorption is rapid and non-dissociative at 300 K, leading ultimately to a (3 × 1) structure with a COCO spacing of 3.8 Å. Heating of the adlayer can, depending on the conditions, lead to competitive desorption and dissociation reactions. The data suggest that the transition state to desorption is mobile whereas that for dissociation is localised. Dissociation is accompanied by diffusion of oxygen into the bulk and formation of a very well-ordered (2 × 3) carbon structure. This structure is interpreted in terms of epitaxial growth of the (001) plane of Co3C. The carbide surface is still capable of chemisorbing a substantial amount of CO, but cannot dissociate it. Some other ordered phases of the CoCCO system are also observed, and an attempt is made to interpret them in a consistent way. The CO chemistry of the (101&#x0304;2) surface is very different from that of the basal plane.  相似文献   

15.
The curves describing small-angle x-ray scattering at npor-C nanoporous carbon samples obtained from polycrystalline α-SiC, TiC, and Mo2C and a 6H-SiC single crystal have been analyzed. An algorithm is developed for taking into account the corrections to experimental curves for the intensity of the primary beam transmitted through the sample and the height of the inlet slit in these measurements. Two systems of nanoclusters observed in the npor-C structure differ in the type of stacking of structural elements: small-scale mass fractals of a dimension 1<D 2<3 and a size L 2=50–90 Å, which depend on the type of the initial carbide, and large-scale nanoclusters having a size L 1>550 Å. In most samples, large-scale nanoclusters can be regarded as objects with a fractal surface and a dimension 2<D 1<13, which also depends on the type of the initial carbide. Large-scale nanoclusters in npor-C obtained from Mo2C prove to be mass fractals with a dimension D 1>2. Peculiarities of the structure formation of nanoporous carbon obtained from various carbides are discussed.  相似文献   

16.
Microwave-assisted synthesis of carbon-supported Mo2C and WC nanomaterials was studied. Two different routes were utilized to prepare MoO3 (WO3) - C precursors that were then subjected to microwave irradiation in an inert atmosphere. The effect of synthesis conditions, such as irradiation time and gas environment, was investigated. The structure and formation mechanism of the carbide phases were explored. As-synthesized nanomaterials exhibited catalytic activity for hydrous hydrazine (N2H4·H2O) decomposition at 30–70 °C. It was shown that the catalyst activity significantly increases if microwave irradiation is applied during the decomposition process. Such conditions permit complete conversion of hydrazine to ammonia and nitrogen within minutes. This effect can be attributed to the unique nanostructure of the catalysts that includes microwave absorbing carbon and active carbide constituents.  相似文献   

17.
We have investigated the decomposition of carbon monoxide on polycrystalline and (001), (110) monocrystalline molybdenum surfaces. This study was performed by massspectrometry, for thermal desorption studies, Auger electron spectrometry (AES), low energy electron diffraction (LEED) and photoelectron spectroscopy (ESCA). By heating the clean Mo surface in CO or by heating the Mo surface covered with CO, the dissociation of chemisorbed CO leads to a build-up of carbon layer which inhibits the subsequent adsorption. Two distinct types of fine structure are associated with the KLL line of carbon Auger spectra. If the Mo surface is heated at a temperature between 300 and 1500 K, the Auger peak is characteristic of a “graphite layer”. If the Mo surface is heated at a temperature up to 2000 K, the Auger peak is characteristic of a “carbure” layer. This “carbure layer” give rise to a surstructure which agrees with a Mo2C surface layer and was also investigated by ESCA. Chemical shifts of (1s) C and (3d) Mo photoemission bands were observed and attributed to the bounding between Mo and C atoms in the Mo2C layer.  相似文献   

18.
当一束具有一定能量和强度的电子束轰击超高真空系统中残余的水汽、一氧化碳和二氧化碳时,将导致这些气体分子通过如下反应:H2O→Oad+H2,CO2→Oad+CO,CO→Oad+Cad分解并共吸于镍表面。碳和氧的原子各自占据镍(001)面部份四重吸附位置,形成结构为p(2×2)或c(2×2)的许多独立的吸附畴,电子束轰击促进畴的成核、长大、连结和有序化。当氧和碳的原子占据了镍(001)面约一半的四重吸附位后,上述吸附反应将与导致氧和碳的脱附反应:C*+Oad→CO,O*+Cad→CO平衡,氧化镍与碳化镍开始成核。由于残余含氧气体中氧的含量超过碳,氧化镍成核占优势,使碳的吸附被排斥,已吸附的碳被排挤,形成电子束斑内氧高碳低、束斑外碳高氧低的“互补”分布。电子束轰击过程中碳的俄歇峰形的变化反映着碳原子与基底原子的不同结合状态。电子束的解离效应在吸附的初始阶段起重要作用,而其热效应对氧化镍的长大起重要作用。 关键词:  相似文献   

19.
The growth of silicon carbide nanocrystals on Si(1 0 0) is studied by synchrotron surface X-ray diffraction (SXRD) during annealing at high temperature. A chemisorbed methanol monolayer is used as carbon source, allowing to have a fixed amount of carbon atoms to feed the growth. At room temperature, minor changes in the 2 × 1 reconstruction of silicon are observed due to the formation of Si-O-CH3 and Si-H bonds from methanol molecules. When annealed at 500 °C, carbon incorporation into the silicon leads only to local modifications of the surface structure. Above 600 °C, tri-dimensional silicon carbide nanocrystals growth takes place, together with surface roughening and sharp decrease of domain sizes of the 2 × 1 reconstruction. The different processes taking place at each temperature are clearly distinguished and identified during the real time SXRD measurements.  相似文献   

20.
An x-ray small-angle scattering study is reported of the structure of nanoporous carbon prepared by chlorinating carbide compounds having different crystal structures (SiC, TiC, Mo2C). The measurements were carried out both in reflection and transmission. The angular dependences of the scattering intensity obtained are treated as a result of scattering from nanoparticles of different size. By unfolding the experimental curves into components corresponding to particles with different gyration radii R g, scatterer distribution functions in gyration radius m(R g) were found. It is shown that, irrespective of the type of the starting carbide, particles with R g~5 Å make up the largest fraction in porous carbon. Samples prepared from different carbides differ in the degree of nanoparticle uniformity in size. The most uniform in size are nanoparticles in the samples prepared from SiC, in which the average value R g av <6 Å. Nanoparticles in the porous carbon produced from Mo2C are about twice larger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号