首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of an absorptive coating on the dynamics of underwater laser-induced shock process have been observed from the end of laser pulse to hundreds of microseconds after irradiation by time-resolved imaging techniques. A laser pulse of 13 ns at 1,064 nm was focused by a 40-mm focal length lens onto the surface of epoxy-resin blocks immersed in water to induce the shock process in the confining regime. A custom-designed time-resolved photoelasticity imaging technique and a high-speed laser stroboscopic videography technique in photoelasticity mode were used to analyze the evolution of shock waves in the water phase, the strength of stress waves in the solid phase, the oscillation of cavitation bubbles, and the generation of bubble-collapse-induced shock waves. We showed that black paint coating enhances the strength of laser-induced stress wave inside the solid, drives faster shock waves traveling in the water phase, and produces higher-energy cavitation bubbles. We propose that even at power densities of 1 GW/cm2 and above, an absorptive coating can intensify the shock process by enhancing the absorption of laser energy by plasma.  相似文献   

2.
强激光冲击铝合金改性处理研究   总被引:13,自引:2,他引:13  
吴边  王声波  郭大浩  吴鸿兴 《光学学报》2005,25(10):352-1356
利用新型聚偏1.1-二氟乙烯(PVDF)压电传感器,实现了对激光引发的冲击波压力的实时测量,得到激光引发的冲击波峰压在铝中成指数型的衰减规律;观测了不同约束层材料在铝靶表面产生的激光冲击波,研究了不同约束层对冲击效果的影响;最后用激光冲击强化装置对7050-T7451航空铝合金结构材料进行了冲击强化处理,对试件激光冲击区存在的残余压应力及位错密度进行了测量。结果显示经激光冲击处理的试件表面具有极高的残余压应力,可达-200MPa以上。激光冲击处理后铝合金的位错密度得到显著的提高,疲劳寿命提高到175%~428%。这些重要结果对激光冲击改性处理技术的实际应用具有指导性作用。  相似文献   

3.
4.
约束靶面黑漆涂层对激光冲击波的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
 介绍了约束靶表面的黑漆涂层对激光冲击波的影响。激光功率密度 109W/cm2量级,脉宽33ns,波长1.06μm。靶材选用两种不同厚度的铜和铝,靶表面用有机玻璃约束。通过对冲击波压力的直接测量发现,涂层不仅可以增加激光冲击波压力,而且还影响冲击波的演化过程。比较有无涂层的靶面SEM照片发现,黑漆涂层能有效地保护激光辐照表面,使之不受激光烧蚀。  相似文献   

5.
The characteristics of the supersonic flow of the laser heating technique for producing micro-scale metallic particles were investigated in this study. A numerical model was established to predict the flow fields and particle trajectories leaving a spray nozzle with shock wave effects. The compressible flow of the shock waves and the trajectories of particles in diameters of 1–20 μm were simulated and compared with the flow visualization. In the experiment, a pulsed Nd-YAG laser was used as heat source on a carbon steel target within the nozzle, and the carbon steel particles were ejected by high-pressure air. The result shows that the shock wave structures were generated at various entrance pressures, and there is a significant increase in the amount of carbon steel particles and the spraying angles by increasing the entrance air pressure.  相似文献   

6.
纳秒激光在铜靶材中诱导冲击波的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王绩勋  高勋  宋超  林景全 《物理学报》2015,64(4):45204-045204
基于聚偏二氟乙烯压电传感器, 对铜靶材中纳秒激光脉冲诱导的冲击波传播过程进行了实验研究, 给出了铜靶材内冲击压强随激光脉冲能量和靶材厚度的变化规律. 实验结果表明: 500 mJ激光脉冲能量作用到2 mm厚的铜靶材产生的冲击压强达到2.1 MPa; 激光脉冲能量从200 mJ 增加到500 mJ, 在铜靶材厚度为2和4 mm条件下, 冲击压强分别增加了162%和231%; 而当铜靶材厚度从2 mm增加到6 mm时, 在400和500 mJ激光脉冲能量作用下, 铜靶材内冲击压强分别降低了32%和49%.  相似文献   

7.
Abstract

Laser-driven shock wave propagation in a transparent material such as Plexiglas coated with a thin overlayer of gold is studied using the technique of high speed optical shadowgraphy. A Nd: glass laser was focussed to produce intensities in the range of 10′2-10′4W/cm2 on the target, within an irradiation spot diameter of 160 pm, optical shadowgrams were recorded bya second harmonic (0.53 pm wavelength) pulse. Shock pressures and scaling of pressure with laser intensity was studied. Shock pressures in gold-coated Plexiglas target was observed to be considerably higher compared to those in uncoated targets. This enhancement of shock pressure has been explained on the basis of contribution of an X-ray driven ablative heat wave in the gold plasma. Shock pressure values show a close agreement with those obtained from a one-dimensional Langrangian hydrodynamic simulation. Shadowgrams of shock fronts produced by non-uniform spatial laser beam irradiation profiles have shown complete smoothing when a gold layer is used on a Plexiglas target.  相似文献   

8.
Pulsed digital holographic interferometry has been used to study the effect of the laser spot diameter on the shock wave generated in the ablation process of an Nd:YAG laser pulse on a Zn target under atmospheric pressure. For different laser spot diameters and time delays, the propagation of the expanding vapour and of the shock wave were recorded by intensity maps calculated using the recorded digital holograms. From the latter, the phase maps, the refractive index and the density field can be derived. A model was developed that approaches the density distribution, in particular the ellipsoidal expansion characteristics. The induced shock wave has an ellipsoid shape that approaches a sphere for decreasing spot diameter. The ellipsoidal shock waves have almost the same centre offset towards the laser beam and the same aspect ratio for different time steps. The model facilitates the derivation of the particle velocity field. The method provides valuable quantitative results that are discussed, in particular in comparison with the simpler point source explosion theory.  相似文献   

9.
约束层对激光驱动冲击波压力影响机理的理论研究   总被引:2,自引:0,他引:2       下载免费PDF全文
顾永玉  张永康  张兴权  史建国 《物理学报》2006,55(11):5885-5891
针对刚性约束层、柔性约束层以及液体约束层,从激光诱导冲击波阵面状态、汽化物(包括气体和等离子体)扩散以及冲击波的反射进行分析,发现对于脉宽小于冲击波通过汽化物层的时间间隔的短脉冲激光,约束层并不能直接提高冲击波的冲量,而对于脉宽大于冲击波通过汽化层时间间隔的激光,其增强冲击效果是通过约束汽化物的扩散,提高压力幅值和由于冲击波在约束层与工件表面的多次反射而延长对工件的作用时间来实现的.刚性约束层能最大地增加冲击冲量,而柔性约束层和液体约束层的主要优点是其形状可与非平面形工件表面符合. 关键词: 激光 约束层 扩散 反射波  相似文献   

10.
强脉冲激光在AZ31B镁合金中诱导冲击波的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究强脉冲激光在镁合金中诱导冲击波的衰减,采用Nd:Glass脉冲激光(1054 nm,23 ns)对AZ31B变形镁合金试样表面进行冲击,并利用响应快、测量范围大的PVDF压电膜传感器以及示波器实时测量了强脉冲激光在镁合金靶中诱导激光冲击波的相对压力.根据冲击波每次在靶材背面反射时,所经过距离的不同得到激光冲击波在镁合金中的衰减规律.结果表明,在激光能量为5J的强脉冲激光作用下,镁合金中冲击波衰减的平均速度为5.83×103 m/s,与镁合金中应力波纵波的传播速度相符;强脉冲激光诱导冲击波在镁合金中是以指数规律衰减的.试验所得分析结果对激光冲击强化镁合金的应用具有重要意义. 关键词: 激光 镁合金 压电膜传感器 衰减规律  相似文献   

11.
Rui Zhao  Zhong-hua Shen  Xiao-wu Ni 《Optik》2006,117(7):299-302
A new simple optical system based on optical beam deflection combining the holophote corner cube was developed in order to study the dynamics of laser-induced shock waves in air. In this method, we adopt a He-Ne laser beam as the detection beam. The He-Ne laser beam, reflected by corner cube, intersects the propagating shock wave at two successive positions. The measurement of the shock wave velocity benefits from the double peak signals induced by the same acting laser pulse, which is calculated from the time interval between the corresponding oscilloscope signals and the distance of the two He-Ne laser beams. By virtue of this setup, we are also able to determine the pressure of the generated shock waves. It is shown that this method is simple with a fairly good precision and is much easier than the conventional methods used for this task.  相似文献   

12.
One of the main applications of ultrasonic melt treatment is the grain refinement of aluminium alloys. Among several suggested mechanisms, the fragmentation of primary intermetallics by acoustic cavitation is regarded as very efficient. However, the physical process causing this fragmentation has received little attention and is not yet well understood. In this study, we evaluate the mechanical properties of primary Al3Zr intermetallics by nano-indentation experiments and correlate those with in-situ high-speed imaging (of up to 1 Mfps) of their fragmentation process by laser-induced cavitation (single bubble) and by acoustic cavitation (cloud of bubbles) in water. Intermetallic crystals were chemically extracted from an Al-3 wt% Zr alloy matrix. Mechanical properties such as hardness, elastic modulus and fracture toughness of the extracted intermetallics were determined using a geometrically fixed Berkovich nano-diamond and cube corner indenter, under ambient temperature conditions. The studied crystals were then exposed to the two cavitation conditions mentioned. Results demonstrated for the first time that the governing fragmentation mechanism of the studied intermetallics was due to the emitted shock waves from the collapsing bubbles. The fragmentation caused by a single bubble collapse was found to be almost instantaneous. On the other hand, sono-fragmentation studies revealed that the intermetallic crystal initially underwent low cycle fatigue loading, followed by catastrophic brittle failure due to propagating shock waves. The observed fragmentation mechanism was supported by fracture mechanics and pressure measurements using a calibrated fibre optic hydrophone. Results showed that the acoustic pressures produced from shock wave emissions in the case of a single bubble collapse, and responsible for instantaneous fragmentation of the intermetallics, were in the range of 20–40 MPa. Whereas, the shock pressure generated from the acoustic cavitation cloud collapses surged up to 1.6 MPa inducing fatigue stresses within the crystal leading to eventual fragmentation.  相似文献   

13.
约束结构下激光冲击波特性实验研究   总被引:9,自引:1,他引:8       下载免费PDF全文
 在约束结构下用短脉冲强激光对不同形状的铝片进行了冲击对比实验,研究了约束层和表面黑色涂层的作用。进行了水约束层作用的实验,所得的应力波强度与无约束层时相比有大幅度提高,但低于理论预测值。比较实验结果发现,黑色涂层更主要的作用是防止靶表层的烧蚀破坏,而冲击过后剩余的涂层会明显地衰减传向靶中的应力波。对于实际工程应用中有重大意义的非规则平面情形下的约束机制,实验表明,在曲率半径大于400mm时平面约束结构的作用依然有效。  相似文献   

14.
In this paper, the cavitation performance and corresponding pressure pulsation, noise and vibration induced by the choked cavitating flow in a Venturi reactor are investigated experimentally under different cavitation conditions by using high-speed camera and high frequency sensors. Based on the instantaneous continuous cavitation images, the Proper Orthogonal Decomposition (POD), a tool to analyze the large-scale cavitation flow structure, is applied to investigate the choked cavitating flow dynamics. The POD results show that two mechanisms, re-entrant jet flow mechanism and shock wave mechanism, govern the shedding and collapse of cavitation cloud at different pressure ratios. These mechanisms contribute to the variation of pressure pulsation, noise and vibration at different pressure ratios. The pressure pulsation spectrum behaves differently in various cavitation regions induced by the choked cavitating flow. Due to the existence of low pressure in re-entrant region, the influence of high frequency fluctuation on pressure pulsation caused by re-entrant flow is small. Moreover, with the increase of pressure ratio, the induced noise and vibration intensity decreases gradually, then increases and reaches a maximum value. Finally, it drops to a low and stable level. Despite different inlet pressures, the intensity of cavitation noise and vibration reaches the maximum value at the same pressure ratio. Specifically, the FFT analysis of noise and vibration signals indicates that low frequency component prevails at small pressure ratio owing to the re-entrant jet mechanism, while high frequency component prevails at large pressure ratio owing to the shock wave mechanism. The relationship between the choked cavitation dynamics and the induced pressure pulsation, noise and vibration in the Venturi reactor is highlighted. The results can provide guidance for the optimal operation condition of the Venturi reactor for cavitation applications such as water treatment.  相似文献   

15.
Laser shock forming is conceived as a non-thermal laser forming method of thin metal sheets using the shock wave induced by laser irradiation to modify the target curvature. The plastic deformation induced by the shock wave and the direct plasma pressure applied on the material generate a residual stress distribution in the material finally leading to its bending. Using water as a confinement medium for the plasma the pressure can be increased around 10 times and the final deformation has a dramatic increase.The effect can be made clearly apparent in thin specimens (up to 1 mm). In the present study thin (100 μm) stainless steel (AISI 316) strips (1 mm long and 300 μm wide) in single and double pinned configurations have been investigated.A Nd:YAG Laser (1064 nm) with 10 ns of pulse length (FWHM) and an energy of 21 mJ per pulse is focused in the strip (spot diameter of the spot = 500 μm).Experimental and numerical studies of the influence of plasma confinement in the process and number of applied pulses are presented.The study shows that the final bending of the specimens can be controlled on a relative wide range by a stable quasi-proportional relation to the number of applied pulses and, what is considered as of major importance, that plasma confinement increases the generated pressure and thus the bending in the target.Laser shock microforming in confined configuration is considered as a technique allowing the successful processing of components in a medium range of miniaturization.  相似文献   

16.
High-power pulsed lasers provide an ingenious method for launching metal foils to generate high-speed flyers for high-pressure loading in material science or aerospace engineering.At high-temperature and high-pressure laser-induced conditions,the dynamic response of the metals and the mechanism of flyer formation remain unclear.In this study,the overall process of the laser-driven aluminum flyer,including laser ablation,rupture of metal foil,and the generation of the flyer was investigated by molecular dynamics combined with the two-temperature model.It was found that under high laser fluence(over 1.3 J/cm;with 200-fs laser pulse duration),the laser induced a shock wave with a peak pressure higher than25 GPa,which led to shear bands expanding from the edge of the laser ablation zone in the foil.Compared with the cases of low laser fluence less than 0.5 J/cm-1,the shear band induced by high laser fluence promotes the rupture of the foil and results in a high-speed flyer(>1 km/s)with better flatness and integrity.In addition,the shock wavefront was found to be accompanied by aluminum crystal phase transformation from face-centered cubic(FCC)to body-centered cubic structure.The crystal structure reverts with the decrease of pressure,therefore the internal structure of the generated flyer is pure of FCC.The results of this study provide a better understanding of the laser-induced shock effect on the foil rupture and flyer quality and forward the development of the laser-driven flyer.  相似文献   

17.
The paper presents recent results of the research on strain solitary wave (soliton) evolution in elastic wave guides with different types of inhomogeneities. We analyze in calculations, numerical simulations and in experiments how physical or geometrical inhomogeneities affect the parameters of a density soliton propagating in it. In our experiments strain solitons are produced in a wave guide from an initial shock wave generated in the surrounding water by laser evaporation of a metallic target immersed into it nearby the input edge of the wave guide. Strain solitons are recorded in a desired part of the wave guide by means of holographic interferometry that allows to visualize the whole process and to obtain the complete set of data at different stages of the wave evolution.  相似文献   

18.
Pressure-sensitive paint is presented and evaluated in this article as a quantitative technique for measurement of acoustic pressure fluctuations. This work is the culmination of advances in paint technology which enable unsteady measurements of fluctuations over 10 kHz at pressure levels as low as 125 dB. Pressure-sensitive paint may be thought of as a nano-scale array of optical microphones with a spatial resolution limited primarily by the resolution of the imaging device. Thus, pressure-sensitive paint is a powerful tool for making high-amplitude sound pressure measurements. In this work, the paint was used to record ensemble-averaged, time-resolved, quantitative measurements of two-dimensional mode shapes in an acoustic resonance cavity. A wall-mounted speaker generated nonlinear, standing acoustic waves in a rigid enclosure measuring 216 mm wide, 169 mm high, and 102 mm deep. The paint recorded the acoustic surface pressures of the (1,1,0) mode shape at approximately 1.3 kHz and a sound pressure level of 145.4 dB. Results from the paint are compared with data from a Kulite pressure transducer, and with linear acoustic theory. The paint may be used as a diagnostic technique for ultrasonic tests where high spatial resolution is essential, or in nonlinear acoustic applications such as shock tubes.  相似文献   

19.
根据神光-Ⅱ第九路高功率激光加载的特点,对传统静高压金刚石压砧装置进行了改进和优化设计,研制出了适合高功率激光加载条件下材料宽域状态方程研究的新型静高压靶.在神光-Ⅱ高功率激光装置上建立了基于静高压金刚石压砧和动高压激光相结合的材料宽域状态方程研究平台.利用这一平台开展了超纯水的宽域状态方程实验探索,获得了较好的实验结果.  相似文献   

20.
A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号