首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
This paper investigated the influence of stimulus uncertainty in binaural detection experiments and the predictions of several binaural models for such conditions. Masked thresholds of a 500-Hz sinusoid were measured in an NrhoSpi condition for both running and frozen-noise maskers using a three interval, forced-choice (3IFC) procedure. The nominal masker correlation varied between 0.64 and 1, and the bandwidth of the masker was either 10, 100, or 1,000 Hz. The running-noise thresholds were expected to be higher than the frozen-noise thresholds because of stimulus uncertainty in the running-noise conditions. For an interaural correlation close to +1, no difference between frozen-noise and running-noise thresholds was expected for all values of the masker bandwidth. These expectations were supported by the experimental data: for interaural correlations less than 1.0, substantial differences between frozen and running-noise conditions were observed for bandwidths of 10 and 100 Hz. Two additional conditions were tested to further investigate the influence of stimulus uncertainty. In the first condition a different masker sample was chosen on each trial, but the correlation of the masker was forced to a fixed value. In the second condition one of two independent frozen-noise maskers was randomly chosen on each trial. Results from these experiments emphasized the influence of stimulus uncertainty in binaural detection tasks: if the degree of uncertainty in binaural cues was reduced, thresholds decreased towards thresholds in the conditions without any stimulus uncertainty. In the analysis of the data, stimulus uncertainty was expressed in terms of three theories of binaural processing: the interaural correlation, the EC theory, and a model based on the processing of interaural intensity differences (IIDs) and interaural time differences (ITDs). This analysis revealed that none of the theories tested could quantitatively account for the observed thresholds. In addition, it was found that, in conditions with stimulus uncertainty, predictions based on correlation differ from those based on the EC theory.  相似文献   

5.
The detectability of a sinusoid masked by two sinusoids was studied as a function of signal phase and the frequency separation between the two maskers. The signal frequency fs was equal to the arithmetic mean of the two masker frequencies, fl and fh, where fl less than fh. Signal frequencies of 1 and 4 kHz, eight signal phases, and 12 values of r = (fh-fl)/fs from 0.01-1.0 were used. The data could be divided into three regions. For large masker separations, r greater than 0.4, no consistent effects of signal phase were observed. For r less than 0.4, an effect of signal phase was evident at both signal frequencies. However, the effect of signal phase was different for the two regions 0.03 less than r less than 0.4 and r less than 0.03. For moderate masker separations, 0.03 less than r less than 0.4, masked thresholds were lowest at phases of 0 degrees and 180 degrees and highest at phases of 90 degrees and 270 degrees. For small masker separations, r less than 0.03, masked threshold was highest at 0 degree and the effect of signal phase depended on signal frequency. The different form of the phase effect for these three regions is discussed in terms of the use of different cues, arising from temporal resolution, spectral filtering, combination tones, and envelope spectra.  相似文献   

6.
In this paper previous experiments on auditory filter shapes in binaural masking experiments [A. Kohlrausch, J. Acoust. Soc. Am. 84, 573-583 (1988)] are extended to a wider range of masker and signal durations. The masker was a dichotic broadband noise with frequency-dependent interaural parameters. The interaural phase difference of the masker was 0 below 500 Hz and pi above 500 Hz. Signal frequency varied between 200 and 800 Hz, and the signal was presented either monaurally (Sm) or binaurally in antiphase (S pi). In the first experiment, the masker duration was fixed at 500 ms and signals of 250 and 20 ms were used. In the second experiment, the signal duration was fixed at 20 ms, and the masker duration was reduced to 25 ms. The results from both experiments are consistent with studies using No or N pi maskers: The binaural masking level difference (BMLD) increases slightly for shorter test signals and decreases strongly for short maskers. The BMLD patterns of the first experiment are well described by the auditory-filter model derived for stationary test signals, if the additional influence of "off-frequency listening" for the short test signal is taken into account. The BMLDs resulting from the second experiment (25-ms masker), however, are much lower than predicted by this filter model This outcome supports previous observations that binaural unmasking becomes less effective for very short masker durations and indicates that this effect is even stronger for maskers with a complex structure of interaural parameters.  相似文献   

7.
Auditory evoked cortical responses to changes in the interaural phase difference (IPD) were recorded using magnetoencephalography (MEG). Twelve normal-hearing young adults were tested with amplitude-modulated tones with carrier frequencies of 500, 1000, 1250, and 1500 Hz. The onset of the stimuli evoked P1m-N1m-P2m cortical responses, as did the changes in the interaural phase. Significant responses to IPD changes were identified at 500 and 1000 Hz in all subjects and at 1250 Hz in nine subjects, whereas responses were absent in all subjects at 1500 Hz, indicating a group mean threshold for detecting IPDs of 1250 Hz. Behavioral thresholds were found at 1200 Hz using an adaptive two alternative forced choice procedure. Because the physiological responses require phase information, through synchronous bilateral inputs at the level of the auditory brainstem, physiological "change" detection thresholds likely reflect the upper limit of phase synchronous activity in the brainstem. The procedure has potential applications in investigating impaired binaural processing because phase statistic applied to single epoch MEG data allowed individual thresholds to be obtained.  相似文献   

8.
9.
Two experiments were performed to determine the effects of random intensity fluctuation on NoSo and NoS pi performance. Noise was used as both signal and masker, and stimuli were bands of noise from either 0-2.0 or 2.0-4.0kHz. Signal and masker were either coherent (from the same source) or noncoherent (from independent sources). In the first experiment, noise fluctuation was achieved by modulating a wide band of noise. In the second experiment, fluctuation was achieved by narrowing the noise bandwidth. Results from both experiments indicated that NoSo performance was adversely affected by fluctuation and by noncoherent relation between signal and masker. NoS pi detection was not adversely affected by fluctuation at low frequency, and was affected less adversely than was NoSo detection at high frequency. This difference between NoSo and NoS pi performance is an important consideration when making inferences about monaural and binaural processing when the stimuli are fluctuating rather than temporally steady.  相似文献   

10.
Binaural detection was examined for a signal presented in a narrow band of noise centered on the on-signal masking band (OSB) or in the presence of flanking noise bands that were random or comodulated with respect to the OSB. The noise had an interaural correlation of 1.0 (No), 0.99 or 0.95. In No noise, random flanking bands worsened Spi detection and comodulated bands improved Spi detection for some listeners but had no effect for other listeners. For the 0.99 or 0.95 interaural correlation conditions, random flanking bands were less detrimental to Spi detection and comodulated flanking bands improved Spi detection for all listeners. Analyses based on signal detection theory indicated that the improvement in Spi thresholds obtained with comodulated bands was not compatible with an optimal combination of monaural and binaural cues or to across-frequency analyses of dynamic interaural phase differences. Two accounts consistent with the improvement in Spi thresholds in comodulated noise were (1) envelope information carried by the flanking bands improves the weighting of binaural cues associated with the signal; (2) the auditory system is sensitive to across-frequency differences in ongoing interaural correlation.  相似文献   

11.
Detectability of a filtered probe tone (250, 500, or 1000 Hz) was measured in the presence of a narrow-band Gaussian masker centered at the signal frequency. The signal was interaurally phase-reversed (Spi), and the masker's interaural correlation varied sinusoidally between +1.00 (NO) and -1.00 (Npi) at a varaible rate (fm = 0--4 Hz). The signal was presented at various points on the masker's modulation cycle. For 0-Hz modulation (fixed interaural correlation) signal threshold decreased monotonically as the masker's interaural correlation was changed from -1.00 to +1.00 (by a total of about 20, 16, and 8 dB, respectively, for 250-, 500-, and 1000-Hz signals). For fm greater than 0 the function relating signal threshold to the masker's interaural correlation at the moment of signal presentation became progressively flatter with increasing fm for all signal frequencies. For fm = 4 Hz the function was flat; there was no measurable effect of masker interaural correlation on signal detectability. Estimates of minimum binaural integration time based on these data ranged from 44--243 ms, supporting previous studies which have noted the binaural system's relative insensitivity to dynamic stimulation. Additionally, the estimated time constants were approximately twice as large at 250 Hz as at 500 Hz, indicating observers could follow binaural fluctuations better at 500 Hz. The time-constant estimates at 1000 Hz were not suggiciently reliable to permit comparisons with the lower-frequency data.  相似文献   

12.
Thresholds for detecting interaural phase differences (IPDs) in sinusoidally amplitude-modulated pure tones were measured in seven normal-hearing listeners and nine listeners with bilaterally symmetric hearing losses of cochlear origin. The IPDs were imposed either on the carrier signal alone-not the amplitude modulation-or vice versa. The carrier frequency was 250, 500, or 1000 Hz, the modulation frequency 20 or 50 Hz, and the sound pressure level was fixed at 75 dB. A three-interval two-alternative forced choice paradigm was used. For each type of IPD (carrier or modulation), thresholds were on average higher for the hearing-impaired than for the normal listeners. However, the impaired listeners' detection deficit was markedly larger for carrier IPDs than for modulation IPDs. This was not predictable from the effect of hearing loss on the sensation level of the stimuli since, for normal listeners, large reductions of sensation level appeared to be more deleterious to the detection of modulation IPDs than to the detection of carrier IPDs. The results support the idea that one consequence of cochlear damage is a deterioration in the perceptual sensitivity to the temporal fine structure of sounds.  相似文献   

13.
Thresholds were measured for detection of an increment in level of a 60-dB SPL target tone at 1 kHz, either in quiet or in the presence of maskers at 0.5 and 2 kHz. Interval-by-interval level rove applied independently to remote masker tones substantially elevated thresholds compared to intensity discrimination in quiet, an effect on the order of 10+dB [10 log(DeltaII)]. Asynchronous onset and stimulus envelope mismatches across frequency reduced but did not eliminate masking. A preinterval cue to signal frequency had no effect, but cuing masker frequency reduced thresholds, whether or not masker level was also cued. About 1 to 2 dB of threshold elevation in these conditions can be attributed to energetic masking. Decreasing the overall presentation level and increasing masker separation essentially eliminates energetic masking; under these conditions masker level rove elevates thresholds by approximately 7 dB when the target and masker tones are gated synchronously. This masking persists even when the flanking masker tones are presented contralateral to the target. Results suggest that observers tend to listen synthetically, even in conditions when this strategy reduces sensitivity to the intensity increment.  相似文献   

14.
15.
In an effort to provide a unifying framework for understanding monaural and binaural processing of intensity differences, an experiment was performed to assess whether temporal weighting functions estimated in two-interval monaural intensity-discrimination tasks could account for data in single-interval interaural intensity-discrimination tasks. In both tasks, stimuli consisted of a 50-ms burst of noise with a 5-ms probe segment at temporal positions ranging between the onset and offset of the overall stimulus. During the probe segment, one monaural interval or binaural channel of each trial contained an intensity increment and the other contained a decrement. Listeners were instructed to choose the interval/channel containing the increment. The pattern of monaural thresholds was roughly symmetrical (an inverted U) across temporal position of the probe but interaural thresholds were substantially higher for a brief time interval following stimulus onset. A two-sided exponential temporal window fit to the monaural data accounted for the interaural data well when combined with a post-onset-weighting function that described greatest weighting of binaural information at stimulus onset. A second experiment showed that the specific procedure used in measuring fringed interaural-intensity-difference-discrimination thresholds affects thresholds as a function of fringe duration and influences the form of the best-fitting post-onset-weighting function.  相似文献   

16.
Two experiments investigated the relative influence of components close to and remote from the signal frequency (fs) on the overshoot effect. Overshoot was defined as the difference in threshold between a signal presented 4 ms after, and that for one presented 300 ms after, the onset of a 350-ms masker. Experiment 1 measured the overshoot effect using both wideband and narrow-band maskers (centered on fs), at two signal frequencies and three masker levels. Experiment 2 used a masker consisting of a "middle band" (MB, centered on fs) and two flanking bands (FBs, which, when combined with the MB, produced a flat wideband spectrum). The masker was continuous except for a 300-ms interval just prior to the signal, during which either all three bands, the MB alone, or the FBs alone were turned off. The results of both experiments showed that the overshoot effect was usually determined by off-frequency components. However, the on-frequency components played a substantial role when signal-to-noise ratios (SNRs) at threshold were unusually high, such as at fs = 6500 Hz and intermediate masker levels. It is suggested that two different mechanisms contribute to the overshoot effect: an off-frequency mechanism which operates at all fs and masker levels, and an on-frequency mechanism which contributes to the overshoot effect only at high-threshold SNRs.  相似文献   

17.
Two experiments measured listeners' abilities to weight information from different components in a complex of 553, 753, and 953 Hz. The goal was to determine whether or not the ability to adjust perceptual weights generalized across tasks. Weights were measured by binary logistic regression between stimulus values that were sampled from Gaussian distributions and listeners' responses. The first task was interaural time discrimination in which listeners judged the laterality of the target component. The second task was monaural level discrimination in which listeners indicated whether the level of the target component decreased or increased across two intervals. For both experiments, each of the three components served as the target. Ten listeners participated in both experiments. The results showed that those individuals who adjusted perceptual weights in the interaural time experiment could also do so in the monaural level discrimination task. The fact that the same individuals appeared to be analytic in both tasks is an indication that the weights measure the ability to attend to a particular region of the spectrum while ignoring other spectral regions.  相似文献   

18.
19.
Discriminations of interaural phase differences   总被引:1,自引:0,他引:1  
  相似文献   

20.
Three experiments investigated the role of pre/post exposure to a masker in a detection task with complex, random, spectro-temporal maskers. In the first experiment, the masker was either continuously presented or pulsed on and off with the signal. For most listeners, thresholds were lower when the masker was continuously presented, despite the fact that there was more uncertainty about the timing of the signal. In the second experiment, the signal-bearing portion of the masker was preceded and followed by masker "fringes" of different durations. Consistent with the findings of Experiment 1, for some listeners shorter-duration fringes led to higher thresholds than long-duration fringes. In the third experiment, the masker fringe (a) preceded, (b) followed, or (c) both preceded and followed, the signal. Relative to the middle signal conditions, a late signal yielded lower thresholds and the early signal yielded higher thresholds. These results indicate that listeners can use features of an ongoing sound to extract an added signal and that listeners differ in the importance of pre-exposure for efficient signal extraction. However, listeners do not appear to perform this comparison retrospectively after the signal, potentially indicating a form of backward masking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号