首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The analysis of samples contaminated by organic compounds is an important aspect of environmental monitoring. Because of the complex nature of these samples, isolating target organic compounds from their matrices is a major challenge. A new isolation technique, solid phase microextraction, or SPME, has recently been developed in our laboratory. This technique combines the extraction and concentration processes into one step; a fused silica fiber coated with a polymer is used to extract analytes and transfer them into a GC injector for thermal desorption and analysis. It is simple, rapid, inexpensive, completely solvent-free, and easily automated. To minimize matrix interferences in environmental samples, SPME can be used to extract analytes from the headspace above the sample. The combination of headspace sampling with SPME separates volatile and semi-volatile analytes from non-volatile compounds, thus greatly reducing the interferences from non-target compounds. This paper reports the use of headspace SPME to isolate volatile organic compounds from various matrices such as water, sand, clay, and sludge. By use of the technique, benzene, toluene, ethyl-benzene, and xylene isomers (commonly known as BTEX), and volatile chlorinated compounds can be efficiently isolated from various matrices with good precision and low limits of detection. This study has found that the sensitivity of the method can be greatly improved by the addition of salt to water samples, water to soil samples, or by heating. Headspace SPME can also be used to sample semi-volatile compounds, such as PAHs, from complex matrices.  相似文献   

2.
D.C. Kapsimali 《Talanta》2010,80(3):1311-62
Two different derivatizing reagents were tested for the development of a fast and sensitive method for the determination of selenites (SeIV) in human urine. The reagents were sodium tetraethylborate (NaBEt4) and tetraphenylborate (NaBPh4), respectively, and the procedure is based on in situ derivatization of selenites in aqueous medium. Selenite ions are converted to diethylselenide (DESe) or diphenylselenide (DPhSe) and subsequently collected from the headspace by solid phase microextraction using a silica fiber coated with polydimethylsiloxane (HS-SPME). Finally, they are quantitated by GC/MS in SIM mode. Ethylation over phenylation was proved preferable for the headspace extraction because of the higher volatility of the diethyl-derivative of selenites. The optimization of the HS-SPME conditions was performed both in aqueous and urinary solutions. Under the optimum conditions for HS-SPME, the gas chromatographic conditions were also optimized. Between the two alkylation reagents tetraethylborate was proved more efficient and the quantitation was satisfactory. Aqueous certified reference materials were analyzed to evaluate the accuracy of the method. The precision of the method was 4.2% and the calculated detection limit was 0.05 μg L−1 for human urine.  相似文献   

3.
A new method for determination of volatile terpenoids in wine is proposed. An off-line solid phase extraction—gas chromatographic method has been used for the determination. The influence of several extraction variables was studied, including the solid phase employed (C-18 versus divinylbenzene-based), eluting solvent (n-pentane, dichloromethane, ethanol and methanol), volume of eluting solvent (1-4 ml) and drying time (0-20 min). Complete recovery of volatile terpenoids from several kinds of wines was obtained under the optimized conditions.  相似文献   

4.
The applicability of solid phase microextraction (SPME) to the headspace analysis of monoterpene hydrocarbons from conifer needles was examined. To this end, the influences of fiber coating thickness, exposure time, and exposure temperature on the enrichment of the different monoterpene hydrocarbons were investigated. The distribution constants between polydimethylsiloxane fiber and gas phase at a given temperature were found to be very different. A relation is therefore derived to calculate the distribution constants of substances not available from their Kováts retention indices. A slightly different approach could be the use of so-called “relative distribution factors”, not considering the actual volume of fiber coating. In view of the different enrichment conditions in SPME as well as the general problems of headspace analysis, a comparison with a completely different method of sample preparation is presented. Furthermore, some applications of SPME to the analysis of monoterpenes from pine needles are given.  相似文献   

5.
A headspace solid-phase microextraction combined with GC-MS method was developed for the extraction and analysis of cannabinoids from Cannabis samples. Different commercially available fibres were evaluated; polydimethylsiloxane 100 microm was selected as the most efficient one. In order to enhance sensitivity and reduce analysis time, the sampling temperature was studied and it showed that extraction should be performed at a high temperature (150 degrees C). In relation with the high lipophilicity of cannabinoids, a relatively long desorption time (3 min) was necessary to ensure a total transfer from the fibre into the injection port of the gas chromatograph. The method was finally applied to the extraction of Swiss marijuana samples from different regions. Data treatment by principal component analysis and hierarchical cluster analysis allowed a discrimination of the different batches.  相似文献   

6.
Solid phase microextraction (SPME) was applied in the development of a protocol for the analysis of a number of target organic compounds in landfill site samples. The selected analytes, including aromatic hydrocarbons, chlorinated hydrocarbous, and unsaturated compounds, were absorbed directly from a headspace sample above a soil layer onto a fused silica fiber. Following exposure, the fiber was thermally desorbed in the injection port of the gas chromatograph and eluted compounds were detected using a mass selective detector. The stability and sensitivity of the extraction technique were examined at five temperatures (22–60°C) using a 100μm polydimethylsiloxane fiber. Calibrations, using soil samples spiked with selected solvents (0.5–30 μg/g), were linear; trichloroethene (r2 = 0.992) and benzene (r2 = 0.998). SPME was applied to the examination of a municipal landfill where 8 sites were sampled, at three depths, resulting in the detection of xylene (maximum 2.8 μg/g) and a number of other non-target organic contaminants.  相似文献   

7.
Summary A sensitive headspace SPME method for the extraction of residual solvents from pharmaceutical products has been developed and optimized. It was found that minimizing sample and headspace volume has a beneficial effect on extraction efficiency. At the same time the method reproducibility was seriously affected by reducing sample and headspace volume. The added air volume was not found to have any significant influence on method sensitivity. The method showed reproducibilities of less than 10% and detection limits as low as 1 ppb for benzene and dichloromethane. The headspace SPME method is around 1000 times more sensitive than static headspace. The optimized parameters were headspace volume 1.5 mL, sample volume 10 μL, and extraction time 30 min. The method was successfully applied to the identification of unknown residual solvents in three different proprietary active drug substances and was successfully applied to the confirmation of the presence of benzene in a proprietary drug substance. Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   

8.
This investigation evaluates headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) to determine trace levels of organotins in water. The organotins were derivatized in situ with sodium tetraethylborate and adsorbed on a poly(dimethysiloxane) (PDMS)-coated fused silica fiber. The SPME experimental procedures to extract organotins in water were at pH 5, with extraction and derivatization simultaneously at 45 degrees C for 30 min in a 2% sodium tetraethylborate solution and a sample solution volume in the ratio of 1:1, and desorption in the splitless injection port of the GC at 260 degrees C for 2 min. Detection limits are determined to be in the low ng/L range. According to the analysis, the linearity range is from 10 to 10,000 ng/L with R.S.D. values below 12% except triphenyltin (24%). The proposed method was tested by analyzing surface seawater from the harbors on the Taiwanese coast for organotins residues. Some organotins studied were detected in the analyzed samples. Results of this study demonstrate the adequacy of the headspace SPME-GC-MS method for analyzing organotins in sea water samples.  相似文献   

9.
Two different fibre coatings, for solid phase microextraction (SPME) sampling, poly(dimethylsiloxane) (PDMS) and poly(acrylate) (PA), were studied in order to test, for olive oil matrixes, two mathematical models that relate the directly proportional relationship between the amount of analyte absorbed by a SPME fibre and its initial concentration in the sample matrices. Although the PA fibre was able to absorb higher amounts of compounds from the olive oil sample, the equilibrium was reached later then with the PDMS fibre. In both cases, the amount of analyte present affected the time profile or the equilibrium time in two of the concentrations studied, 0.256 μL/kg, 2.56 μL/kg and for 2-ethylfuran, pentan-3-one, pent-1-en-3-one, hexanal, trans,trans-non-2,4-dienal and in the four concentrations studied, 0.256 μL/kg, 2.56 μL/kg, 6.25 μL/kg and 400 μL/kg, for 4-methyl-pent-3-en-2-one, 2-methylbutan-1-ol, methoxybenzene, hexan-1-ol, cis-hex-3-en-1-ol, trans-hex-2-en-1-ol, 2-ethyl-hexan-1-ol and trans,trans-dec-2,4-dienal. Comparing the mathematical models of both fibres, the PA-coated fibre showed direct proportionality between the initial concentration and amount extracted, that allows the possibility of relative quantification in a non-equilibrium state in non-aqueous media. The same was not observed for the PDMS fibre.  相似文献   

10.
In this study, a novel graphene nanosheets (GNSs) coated solid phase microextraction (SPME) fiber was prepared by immobilizing microwave synthesized GNSs on a stainless steel wire. Microwave synthesized GNSs were verified by X-ray diffraction, field emission-scanning electron microscopy (FE-SEM) and transmission electron microscope (TEM). GNS-SPME fiber was characterized using FE-SEM and the results showed the GNS coating was homogeneous, porous, and highly adherent to the surface of the stainless steel fiber. The performance and feasibility of the GNS-SPME fiber was evaluated under one-step microwave assisted (MA) headspace (HS) SPME followed by gas chromatography with electron capture detection for five organochlorine pesticides (OCPs) in aqueous samples. Parameters influencing the extraction efficiency of MA-HS-GNS-SPME such as microwave irradiation power and time, pH, ionic strength, and desorption conditions were thoroughly examined. Under the optimized conditions, detection limits for the OCPs varied between 0.16 and 0.93 ng L(-1) and linear ranges varied between 1 and 1500 n gL(-1), with correlation coefficients ranging from 0.9984 to 0.9998, and RSDs in the range of 3.6-15.8% (n=5). In comparison with the commercial 100 μm polydimethylsiloxane fiber, the GNS coated fiber showed better extraction efficiency, higher mechanical and thermal stability (up to 290°C), longer life span (over 250 times), and lower production cost. The method was successfully applied to the analysis of real water samples with recoveries ranged between 80.1 and 101.1% for river water samples. The results demonstrated that the developed MA-HS-GNS-SPME method was a simple, rapid, efficient pretreatment and environmentally friendly procedure for the analysis of OCPs in aqueous samples.  相似文献   

11.
In this work an analytical procedure based on headspace solid-phase microextraction and gas chromatography coupled with mass spectrometry (HS-SPME–GC/MS) is proposed to determine chlorophenols with prior derivatization step to improve analyte volatility and therefore the decision limit (CCα). After optimization, the analytical procedure was applied to analyze river water samples. The following analytes are studied: 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,4,6-TeCP) and pentachlorophenol (PCP). A D-optimal design is used to study the parameters affecting the HS-SPME process and the derivatization step. Four experimental factors at two levels and one factor at three levels were considered: (i) equilibrium/extraction temperature, (ii) extraction time, (iii) sample volume, (iv) agitation time and (v) equilibrium time. In addition two interactions between four of them were considered. The D-optimal design enables the reduction of the number of experiments from 48 to 18 while maintaining enough precision in the estimation of the effects. As every analysis took 1 h, the design is blocked in 2 days.  相似文献   

12.
Summary An HS-SPME method was developed and applied for the isolation of volatile organic compounds from plants native or acclimatized to Brazil. Method optimization was performed using typical analytes from the target samples; fibers coated with 100 μm PDMS and 75 μm Carboxen/PDMS were tested. Using PDMS 100 μm fibers and GC-MS for separation and identification, up to 99.9% of the peak area in the chromatograms from plants were identified. The method was also applied to quantify the major volatile components of one of the samples (Aloysia gratissima) with results comparable to those from the conventional steam distillation method.  相似文献   

13.
Solid phase microextraction (SPME) was used as the sample introduction technique for high-speed isothermal GC. An injector dedicated for SPME fiber injection was designed and built. The injector was operated in two modes, continuously heated and flash heated. The latter mode proved to be better for high-speed separations. The injector was then used for sample introduction in separation of BTEX. When sampling directly from water with a fiber having a 56 μm thick poly(dimethylsiloxane) coating, the BTEX components were separated under isothermal conditions in ca. 18 s. A fiber with a thinner coating (15 μm) enabled the separation to be completed in ca. 12 s when sampling from headspace. In both cases the results were highly reproducible, as measured by the estimated values of the relative standard deviation.  相似文献   

14.
A method for the determination of volatile organic compounds (VOCs) in recycled polyethylene terephthalate and high-density polyethylene using headspace sampling by solid-phase microextraction and gas chromatography coupled to mass spectrometry detection is presented. This method was used to evaluate the efficiency of cleaning processes for VOC removal from recycled PET. In addition, the method was also employed to evaluate the level of VOC contamination in multilayer packaging material containing recycled HDPE material. The optimisation of the extraction procedure for volatile compounds was performed and the best extraction conditions were found using a 75 μm carboxen-polydimethylsiloxane (CAR-PDMS) fibre for 20 min at 60 °C. The validation parameters for the established method were linear range, linearity, sensitivity, precision (repeatability), accuracy (recovery) and detection and quantification limits. The results indicated that the method could easily be used in quality control for the production of recycled PET and HDPE.  相似文献   

15.
Khajeh M  Yamini Y  Hassan J 《Talanta》2006,69(5):1088-1094
In the present work, a rapid method for the extraction and determination of chlorobenzenes (CBs) such as monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene in water samples using the headspace solvent microextraction (HSME) and gas chromatography/electron capture detector (ECD) has been described. A microdrop of the dodecane containing monobromobenzene (internal standard) was used as extracting solvent in this investigation. The analytes were extracted by suspending a 2.5 μl extraction drop directly from the tip of a microsyringe fixed above an extraction vial with a septum in a way that the needle passed through the septum and the needle tip appeared above the surface of the solution. After the extraction was finished, the drop was retracted back into the needle and injected directly into a GC column. Optimization of experimental conditions such as nature of the extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, the ionic strength and extraction time were investigated. The optimized conditions were as follows: dodecane as the extracting solvent, the extraction temperature, 45 °C; the sodium chloride concentration, 2 M; the extraction time, 5.0 min; the stirring rate, 500 rpm; the drop volume, 2.5 μl; the sample volume, 7 ml; the microsyringe needle temperature, 0.0 °C. The limit of detection (LOD) ranged from 0.1 μg/l (for 1,3-dichlorobenzene) to 3.0 μg/l (for 1,4-dichlorobenzene) and linear range of 0.5–3.0 μg/l for 1,2-dichlorobenzene, 1,3-dichlorobenzene and from 5.0 to 20.0 μg/l for monochlorobenzene and from 5.0 to 30 μg/l for 1,4-dichlorobenzene. The relative standard deviations (R.S.D.) for most of CBs at the 5 μg/l level were below 10%. The optimized procedure was successfully applied to the extraction and determination of CBs in different water samples.  相似文献   

16.
建立了顶空固相微萃取(HSSPME)-气相色谱(GC)-质谱(MS)联用测定纺织品中甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯5种挥发性有机物(VOCs)的分析方法。选择聚二甲基硅氧烷(PDMS)作为萃取涂层,优化了SPME的萃取条件,包括平衡时间、萃取时间、萃取温度、顶空体积、离子强度、搅拌速度、解吸温度和时间以及GC—MS仪器条件。对于甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯方法线性范围分别为0.087~870、3.32~3320、2.28~2280、0.015~150和0.050~50.0ng/g;检出限分别为0.005、0.042、0.670、0.008和0.011ng/g。实际样品加标回收率在80.1%~122%之间,RSD在0.8%~8.6%之间。方法符合纺织品中痕量VOCs的快速分析要求。  相似文献   

17.
采用顶空固相微萃取与气相色谱-质谱联用技术,对八角茴香中风味物质进行了分析。选用自制聚丙烯酸树脂涂层,对样品量、萃取时间、萃取温度、解吸时间等参数进行了优化,结果表明0.10g样品在60℃水浴中顶空萃取40min,250℃下解吸2min达到最佳条件。比较了顶空固相微萃取与传统水蒸气蒸馏两种前处理方法,分析结果非常相似。该方法可用于快速分析八角茴香中的风味物质。  相似文献   

18.
Akarm Karimi 《Talanta》2009,79(2):479-68
A rapid, simple, and sensitive headspace solid phase microextraction coupled to ion mobility spectrometry (HS-SPME-IMS) method is presented for analysis of the highly specific angiotensin-converting enzyme (ACE) inhibitor, captopril (CAP). Positive ion mobility spectra of CAP were acquired with an ion mobility spectrometer equipped with a corona discharge ionization source. Mass-to-mobility correlation equation was used to identify product ions. A dodecylsulfate-doped polypyrrole (PPy-DS) coating was used as a fiber for SPME. The results showed that PPy-DS based SPME fiber was suitable for successfully extracting CAP from human blood plasma and pharmaceutical samples. The HS-SPME-IMS method provided good repeatability (R.S.D.s < 4%) for aqueous and spiked plasma samples. The calibration graphs were linear in the range of 10-300 ng mL−1 (R2 > 0.99) and detection limits were 7.5 ng mL−1 for aqueous and 6.3 ng mL−1 for plasma blank samples. Finally, a standard addition calibration method was applied to HS-SPME-IMS technique for the analysis of blood plasma samples and tablets. Purpose method seemed to be suitable for the analysis of CAP in plasma samples as it is not time consuming (state total time from sample preparation to analysis), it required only small quantities of the sample, and no derivatization was required.  相似文献   

19.
The establishment of geographic origin chemical biomarkers for the marine salt might represent an important improvement to its valorisation. Volatile compounds of marine salt, although never studied, are potential candidates. Thus, the purpose of this work was the development of a headspace solid phase microextraction (SPME) combined with gas chromatography-quadrupole mass spectrometry (HS-SPME/GC-qMS) methodology to study the volatile composition of marine salt. A 65 μm carbowax/divinylbenzene SPME coating fibre was used. Three SPME parameters were optimised: extraction temperature, sample quantity, and presentation mode. An extraction temperature of 60 °C and 16 g of marine salt in a 120 mL glass vial were selected. The study of the effect of sample presentation mode showed that the analysis of an aqueous solution saturated with marine salt allowed higher extraction efficiency than the direct analysis of salt crystals. The dissolution of the salt in water and the consequent effect of salting-out promote the release of the volatile compounds to the headspace, enhancing the sensitivity of SPME for the marine salt volatiles. The optimised methodology was applied to real matrices of marine salt from different geographical origins (Portugal, France, and Cape Verde). The marine salt samples contain ca. 40 volatile compounds, distributed by the chemical groups of hydrocarbons, alcohols, phenols, aldehydes, ketones, esters, terpenoids, and norisoprenoids. These compounds seem to arise from three main sources: algae, surrounding bacterial community, and environment pollution. Since these volatile compounds can provide information about the geographic origin and saltpans environment, this study shows that they can be used as chemical biomarkers of marine salt.  相似文献   

20.
Maïté Bueno 《Talanta》2009,78(3):759-162
The combination of headspace-solid phase microextraction (HS-SPME) and gas chromatography-inductively coupled plasma mass spectrometry (GC-ICPMS) was evaluated for the determination of volatile selenium metabolites in normal urine samples, i.e. without selenium supplementation. HS-SPME operating conditions were optimised and a sampling time of 10 min was found to be suitable for simultaneous extraction of dimethylselenide (DMSe) and dimethyldiselenide (DMDSe). The amount of DMSe and DMDSe extracted onto fibre coating was calculated in clean matrix, i.e. Milli-Q water, on the basis of depletion experiments. When applied to normal urine samples, the developed method allowed the detection of four volatile selenium containing species, among which DMSe and DMDSe could be quantified by standard additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号