首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
We tested the possibility of amperometric detection of DNA hybridization on a gold surface influenced by the immobilization of oligonucleotide giving different orientations of single stranded DNA relative to the gold surface. The DNA sensor was fabricated by chemisorption of 18-mer oligonucleotide modified by a phosphorothioate group either at its 3' or both 3' and 5' terminal. After immobilization of oligonucleotide to the gold support, the sensor was immersed in 11-mercaptoundecanoic acid (MUA) solution. Further chemisorption of MUA resulted in approximately 10-fold increase of resistance of the organic layer. Addition of complementary oligonucleotide resulted in an increase of conductivity for DNA sensor oriented perpendicular to the gold support (DNA with one thiol group), while the conductance decreased for DNA sensor with single stranded DNA oriented parallel to the gold support (with DNA modified by thiol groups at both 3' and 5' terminals). Addition of non-complementary chain resulted a slight decrease or no change of sensor conductivity. The hybridization process at both types of DNA orientations is not cooperative and can be described by Langmuir isotherms. The hybridization event on gold support has been confirmed by mass detection using the quartz crystal microbalance technique.  相似文献   

3.
Impedance spectroscopy is proposed as the transduction principle for detecting the hybridization of DNA complementary strands. In our experiments, different DNA oligonucleotides were used as model gene substances. The gene probe is first immobilized on a graphite-epoxy composite working electrode based genosensor. Detection principle is based on changes of impedance spectra of a redox marker, the ferro/ferricyanide couple, after hybridization with target DNA. Resistance offered to the electrochemical reaction serves as the working signal, allowing for an unlabelled gene assay.   相似文献   

4.
We demonstrate the versatility of a DNA tile system for oligonucleotide hybridization assay and explored the detection limit of the probe tiles for DNA targets of varied lengths.  相似文献   

5.
Jang YC  Jha SK  Chand R  Islam K  Kim YS 《Electrophoresis》2011,32(8):913-919
Detection and quantitation of nucleic acids have gained much importance in the last couple of decades, especially in the post-human genome project era. Such processes are tedious, time consuming and require expensive reagents and equipment. Therefore, in the present study, we demonstrated a simple process for the separation and analysis of small DNA fragments using capillary electrophoretic amperometric detection on an inexpensive disposable glass microchip. The device used polydimethylsiloxane engraved microchannel and Au/Ti in-channel microelectrodes for sample detection. The DNA fragments were separated under low electric field (20 V/cm) for improved detection sensitivity and to retain the biomolecules in their native conformation. With a low sample requirement (as low as 1 μL) and high reproducibility, the proposed microchip device was successful in resolution and detection of DNA fragments of various lengths.  相似文献   

6.
A novel and sensitive electrochemical DNA biosensor based on multi-walled carbon nanotubes functionalized with a carboxylic acid group (MWNTs-COOH) for covalent DNA immobilization and enhanced hybridization detection is described. The MWNTs-COOH-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides with the 5'-amino group were covalently bonded to the carboxyl group of carbon nanotubes. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using an electroactive intercalator daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics dramatically increased DNA attachment quantity and complementary DNA detection sensitivity. This is the first application of carbon nanotubes to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization.  相似文献   

7.
8.
A FIA-amperometric method for azithromycin determination was developed. A working glassy carbon electrode and a Ag/AgCl/NaCl (3 M) reference electrode were used. The determination is based on the electrochemical oxidation of the azithromycin at 0.9 V in Britton-Robinson buffer solution (pH 8.0). Due to the adsorption of the reaction products on the electrode surface, an effective cleaner cycle was implemented. By using the optimum chemical and FIA conditions, a concentration linear range of 1.0-10.0 mg L−1 and a detection limit (LOD) of 0.76 mg L−1 are obtained. The method was validated and satisfactorily applied to the determination of azithromycin in pharmaceutical formulations.  相似文献   

9.
We report on a highly sensitive chemiluminescent (CL) biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H2O2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L-1 of target DNA.
Graphical Abstract
A sensitive chemiluminescent biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticle that were covered with a dendrimer was reported. The immobilization of dendrimer onto the gold nanoparticles enhances sensitivity and gives a detection limit of 6 fM of target DNA.  相似文献   

10.
The fabrication of sensitive sensors with high selectivity is highly desirable for the detection of some important biomarkers,such as nucleic acids,proteins,small molecules and ions.DNA hybridization chain reaction(HCR) and DNA supersandwich self-assembly(SSA) are two prevalent enzyme-free signal amplification strategies to improve sensitivity of the sensors.In this review,we firstly describe the characteristics about DNA HCR and DNA SSA,and then summarize the advances in the one-dimensional DNA nanostructures assisted by HCR and SSA.This review has been divided into three parts according to the two signal amplification methods and highlights recent progress in these two strategies to improve the detection sensitivity of proteins,nucleic acids,small molecules and ions.  相似文献   

11.
Dendron arrays for the force-based detection of DNA hybridization events   总被引:1,自引:0,他引:1  
Single-molecule force measurement methods have attracted increasing interest over recent years for the development of novel approaches for biomolecular screening. However, many of these developments are currently hindered by the available biomolecule surface attachment methods, in that it is still not trivial to create surfaces and devices with highly defined surface functionality and/or uniformity. Here we offer a new approach to address such issues based on the formation of dendron arrays. Through the measurement of forces between dendron surfaces functionalized with complementary DNA oligonucleotides, we observed several unique properties of the surfaces modified via this approach. The capability to record attractive or "jump-in" forces associated with molecular binding events is one of them. Additionally, these events occur in greater than 80% of measurements, and the forces are dependent on the number of complementary DNA bases of the associating strands while being insensitive to the measurement rate. Combined with a narrow distribution of both attractive forces and unbinding forces we suggest such functionalized surfaces offer a significant advance for fast and accurate force-based studies of oligonucleotide hybridization.  相似文献   

12.
We report a new assay for human telomerase activity that relies on polyvalent oligonucleotide nanoparticle conjugates as diagnostic probes and amplification units. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. The two strands not only serve as internal positive controls for each other but also provide a way of amplifying signal. At high concentrations, both elongated and unmodified strands exhibit measurable responses. At low telomerase concentrations (e.g., from 10 HeLa cells), elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. This new assay rivals the sensitivity of the conventional PCR-based method of telomerase detection.  相似文献   

13.
Presented here is the program ChipCheck that allows the computation of total hybridization equilibria for hybridization experiments involving small oligonucleotide arrays. The calculation requires the free energies of binding for all pairs of probes and targets as well as total strand concentrations and probe molecule numbers. ChipCheck has been tested computationally on microarrays with up to 100 spots and 42 target strands (4200 binding equilibria). It arrives at solutions through iterations employing the multidimensional Newton method. While currently running in simulation mode only, an extension of the approach to the exhaustive analysis of chip results is being outlined and may be implemented in the future. The output displays the extent of correct and cross hybridization both graphically and numerically. In principle, calculating total hybridization equilibria allows for eliminating noise from DNA chip results and thus an improvement in sensitivity and accuracy.  相似文献   

14.
An electrochemical DNA hybridization biosensor was developed for the detection of DNA hybridization using MDB and proflavine as electrochemical labels. The biosensor was based on the interaction of 7-dimethyl-amino-1,2-benzophenoxazi-nium Meldola’s Blue (MDB) and proflavine with double stranded DNA (dsDNA) The electrochemical behaviour of MDB and proflavine as well as its interaction with double stranded (dsDNA) were investigated by cyclic (CV) and square wave voltammetry (SWV) and screen printed electrodes (ScPE). Furthermore, DNA-hybridization biosensors were developed for the detection of hybridization between oligonucleotides, which was detected by studying changes in the voltammetric peaks of MDB (reduction peak at −0.251 V) and proflavine (reduction peak at 0.075 V). MDB and proflavine were found to intercalate between the base pairs of dsDNA and oligonucleotides. Several factors affecting the dsDNA or oligonucleotides immobilization, hybridization and indicator preconcentration and interaction time, were investigated. As a result of the interaction of MDB with dsDNA and hybridized oligonucleotides, the voltammetric signals of MDB increased. Furthermore, guanine’s oxidation peak (at 0.901 V) was decreased as MDB’s concentration was increased. As a result of the interaction of proflavine with dsDNA and hybridized oligonucleotides, the voltammetric signals of proflavine decreased. These results were similar for carbon paste and screen printed electrodes. A comparison of the performance between CPE and ScPE was done. Our results showed that lower concentrations of MDB and proflavine were detected using screen printed electrodes. Moreover, reproducibility was better using screen printed electrodes and the detection was faster (regarding the experimental steps), but they are more cost effective.   相似文献   

15.
16.
The detection of DNA hybridization is of central importance to the diagnosis and treatment of genetic diseases. Due to cost limitations, small and easy-to-handle testing devices are required. Electrochemical detection is a promising alternative to evaluation of chip data with optical readout. Independent of the actual readout principle, the hybridization process still takes a lot of time, hampering daily use of these techniques, especially in hospitals or doctor's surgery. Here we describe how direct local electrical heating of a DNA-probe-modified gold electrode affects the surface hybridization process dramatically. We obtained a 140-fold increase of alternating current voltammetric signals for 20-base ferrocene-labeled target strands when elevating the electrode temperature during hybridization from 3 to 48 degrees C while leaving the bulk electrolyte at 3 degrees C. At optimum conditions, a target concentration of 500 pmol/L could be detected. Electrothermal regeneration of the immobilized DNA-probe strands allowed repetitive use of the same probe-modified electrode. The surface coverage of DNA probes, monitored by chronocoulometry of hexaammineruthenium(III), was almost constant upon heating to 70 degrees C. However, the hybridization ability of the probe self-assembled monolayer declined irreversibly when using a 70 degrees C hybridization temperature. Coupling of heated electrodes and highly sensitive electrochemical DNA hybridization detection methods should enhance detection limits of the latter significantly.  相似文献   

17.
Meng Du 《Talanta》2010,81(3):1022-25
This paper described a novel electrochemical DNA biosensor for rapid specific detection of nucleic acids based on the sulfonated polyaniline (SPAN) nanofibre and cysteamine-capped gold nanoparticle (CA-GNP) layer-by-layer films. A precursor film of 3-mercaptopropionic acid (MPA) was firstly self-assembled on the Au electrode surface. CA-GNP was covalently deposited on the Au/MPA electrode to obtain a stable substrate. SPAN nanofibre and CA-GNP were alternately layer-by-layer assembled on the stable substrate by electrostatic force. Cyclic voltammetry was used to monitor the consecutive growth of the multilayer films by utilizing [Fe(CN)6]3−/4− as the redox indicator. The (CA-GNP/SPAN)n films showed satisfactory ability of electron transfer and excellent redox activity in neutral media. Negatively charged probe ssDNA was immobilized on the outer layer of the multilayer film (CA-GNP) through electrostatic affinity. Chronopotentiometry and electrochemical impedance spectroscopy were employed to obtain the direct electrochemical readout for probe ssDNA immobilization and hybridization using [Fe(CN)6]3−/4− in solution as the mediator. While electrochemical impedance spectroscopy led to the characterization of the electron-transfer resistance at the electrode, chronopotentiometry provided the total resistance at the interfaces of the modified electrodes. A good correlation between the total electrode resistances and the electron-transfer resistances at the conducting supports was found. Chronopotentiometry was suggested as a rapid transduction means (a few seconds). Based on the (CA-GNP/SPAN)n films, the target DNA with 20-base could be detected up to 2.13 × 10−13 mol/L, and the feasibility for the detection of base-mismatched DNA was also demonstrated.  相似文献   

18.
Wang J  Kawde AN 《The Analyst》2002,127(3):383-386
A new protocol is described for amplifying label-free electrochemical measurements of DNA hybridization based on the enhanced accumulation of purine nucleobases in the presence of copper ions . Such electrical DNA assays involve hybridization of the target to inosine-substituted oligonucleotide probes (captured on magnetic beads), acidic dipurinization of the hybrid DNA, and adsorptive chronopotentiometric stripping measurements of the free nucleobases in the presence of copper ions. Both amplified adenine and guanine peaks can be used for detecting the DNA hybridization. The dramatic signal amplification advantage of this type of detection has been combined with efficient magnetic removal of non-complementary DNA, use of microliter sample volumes and disposable transducers. Factors influencing the signal enhancement were assessed and optimized. A detection limit of 40 fmol (250 pg) was obtained with 10 min hybridization and 5 min adsorptive-accumulation times. The advantages of this procedure were demonstrated by its application in the detection of DNA segments related to the BRCA1 breast cancer gene. The copper enhancement holds great promise not only for the detection of DNA hybridization, but also for trace measurement of nucleic acids.  相似文献   

19.
Photoelectrochemistry as a novel strategy for DNA hybridization detection   总被引:1,自引:0,他引:1  
Li Q  Luo G  Feng J  Cai D  Qi O 《The Analyst》2000,125(11):1908-1910
The special properties of ssDNA and dsDNA molecules in structure and electric behavior, may offer us some new ideas for the fabrication of genosensors and DNA-chips. In this work, the photoelectrochemical method was firstly employed to characterize the photoelectric behavior of a ssDNA probe electrode, which was prepared with the self-assembly technique, and its resulting dsDNA electrode. The obvious decrease in the photocurrent of the dsDNA modified electrode at open potential or a bias voltage indicated that photoelectrochemistry was another useful method for DNA hybridization detection. Using the special design of ssDNA probes, we attempt to discuss further the relationship between the properties of DNA molecules and their photoelectric behaviors. In addition, the electrochemical impedance method was employed to verify the occurrence of some modifications over the electrode interface before and after the hybridization event.  相似文献   

20.
A magnetic triggering of a solid-state electrical transduction of DNA hybridization is described. Positioning of an external magnet below the thick-film electrode attracts the DNA/particle network and enables the solid-state electrochemical stripping detection of the silver tracer. TEM imaging indicates that the hybridization event results in a three-dimensional aggregate structure in which duplex segments link the metal nanoparticles and magnetic spheres, and that most of this assembly is covered with the silver precipitate. This leads to a direct contact of the metal tag with the surface (in connection to the magnetic collection) and enables the solid-state electrochemical transduction (without prior dissolution and subsequent electrodeposition of the metal), using oxidative dissolution of the silver tracer. No such aggregates (and hence magnetic "collection") are observed in the presence of noncomplementary DNA, that is, without the linking hybrid. The new method couples high sensitivity of silver-amplified assays with effective discrimination against excess of closely related nucleotide sequences (including single-base imperfections). Such direct electrical detection of DNA/metal-particle assemblies can bring new capabilities to the detection of DNA hybridization, and could be applied to other bioaffinity assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号