首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel(O) Complexes with the Anionic Ligands E (C6H5)?3 (E = Si, Ge, Sn) Complexes of the type MeIXNi(EPH3)X(THF)Y are formed from Ni(COD)2 by substitution with MeIEPh3 (E = Si, Ge, Sn) in THF (COD = Cyclooctadiene-1,5). In the case of the ligands GePh?3 and SnPh?3 nickel(O) is fourfold coordinated, but in the case of SiPh?3 it is only two-fold or threefold coordinated. Products of the reaction between Ni(COD)2 and LiPbPh3 are Li2Ni(COD)Ph2(THF)5 and Ph3PbPbPh3. The 1H-n.m.r., 29Si-n.m.r., and 119Sn-Mössbauer spectra of the complexes MeIXNi(EPh3)X(THF)Y are compared with the spectra of the corresponding alkali compounds MeIEPh3. The magnetic anisotropy effects of the atomes Ge, Sn, Pb and Ni are of high importance for 1H- and 29Si-chemical shifts. The donor action of SnPh?3 is shown by the Mössbauer spectrum of Na4Ni(SnPh3)4(THF)4. But there is no direct evidence of π-back donation in the compound.  相似文献   

2.
Chemistry of Gallium. 20. Synthesis and Structures of Novel Triphenylsilyl and Triphenylgermyl Substituted Gallanes and Oligogallanes – [Ga3(GePh3)6], the First Linear Trigallane From the raction of sonochemically prepared “GaI” with LiEPh3 (E = Si, Ge) the compounds [Li(THF)2][GaI(EPh3)3] (E = Si: 22 , E = Ge: 24 ), [Li(THF)4][GaI(SiPh3)3] ( 23 ), [Li(THF)4][Ga2(SiPh3)5] ( 21 ) and [Li(THF)4][Ga3(GePh3)6] ( 25 ) as well as polymeric Li(THF)I ( 20 ) were obtained and structurally characterized. 21 is a monoanionic digallane, exhibiting a trigonal planar and a tetrahedrally coordinated gallium centre. 25 has a linear Ga3 core, where the terminal gallium atoms bear three GePh3‐groups, each. The central Ga atom is only 2‐coordinated. Thus, 25 may be a valuable hint to the formation of larger gallium clusters with “naked” gallium atoms. Derivatives of 21 and 25 have been studied by DFT methods.  相似文献   

3.
The betain‐like compound S2CC(PPh3)2 ( 1 ), which is obtained from CS2 and the double ylide C(PPh3)2, reacts with [Co2(CO)8] and [Mn2(CO)10] in THF to afford the salt‐like complexes [Co{S2CC(PPh3)2}3][Co(CO)4]3 ( 2 ) and [(CO)4Mn{S2CC(PPh3)2}][Mn(CO)5] ( 3 ), respectively, in good yields. At both d6 cations 1 acts as a chelating ligand. Disproportionation reactions from formal Co0 into CoIII and Co?I and from Mn0 into MnI and Mn?I occurred with the removal of four or one carbonyl groups, respectively. The crystal structures of 2· 5.5THF and 3· 2THF are reported, which show a shortening of the C–C bond in the ligand upon complex formation. The compounds are further characterized by 31P NMR and IR spectroscopy.  相似文献   

4.
Displacement of norbornadiene (nbd; bicyclo[2.2.1]hepta‐2,5‐diene) from [Rh(PPh3)2(nbd)]ClO4 by hydrogenation in the presence of PPh3 and formamide or Me‐substituted derivatives, results in the formation of O‐bonded formamide complexes [Rh(PPh3)3(OCHNHxMe2−x)]ClO4 (x=0, 1, 2) rather than N‐bonded derivatives. These have been characterised by spectroscopic measurements and, in the case of [Rh(PPh3)3(OCHNHMe)]ClO4, by X‐ray crystallography. All undergo oxidative addition with H2, and the rates of ligand exchange in the RhI and RhIII complexes have been determined by magnetisation‐transfer measurements.  相似文献   

5.
Simple Trithio- and Perthiocarbonato Complexes with Interesting Bond Properties: [E(CS3)2]2? (E = Sn, Zn, Cd), [E(CS3)3]3? (E = As, Sb, Bi, Co), {Cu(CS3)?} and [Zn(CS4)2]2? By reactions of potassium trithiocarbonate ( 1 ) with solutions of zinc(II)- acetylacetonate, cadmium(II)-chloride, tin(II)-chloride, arsenic(III)-sulfide (suspension), antimony(III)-chloride, bismuth(III)-chloride and copper(II)-chloride in dimethyl sulfoxide, as well as of trisodium hexanitrito cobaltate(III) in water, and the precipitation of the complexes with an aqueous solution of tetraphenylphosphonium chloride the compounds (PPh4)2[Zn(CS3)2] ( 2 ), (PPh4)2[Cd(CS3)2] ( 3 ), (PPh4)2[Sn(CS3)2] ( 4 ), (PPh4)3[As(CS3)3] ( 5 ), (PPh4)3[Sb(CS3)3] ( 6 ), (PPh4)3[Bi(CS3)3] ( 7 ), (PPh4)3[Co(CS3)3] ( 8 ) and (PPh4)Cu(CS3) ( 9 ) have been isolated. (PPh4)2[Zn(CS4)2] · CH3NO2 ( 10 ) has been prepared by heating a solution of 2 in nitromethane to 60--70°C in presence of air. The reaction of 1 in dimethyl sulfoxide with an aqueous tetraphenylphosphonium chloride solution in presence of oxygen leads to (PPh4)2[C2S6] ( 11 ). The compounds have been characterized by spectroscopical studies (IR, Raman, UV/Vis, 113Cd/59Co-NMR), magnetic susceptibility measurements, powder diffractometry, elemental analyses and single crystal X-ray structure analysis ( 4 – 7 , 10 and 11 ). The difficult growing of single crystals has been reported in detail. For crystal data see Inhaltsübersicht.  相似文献   

6.
The new [Ru11(PPh3)2L2] complexes [L=monoanion of tropolone, benzoylacetone, or 3-hydroxy-2-pyridinone (hypy)], [RuH(PPh3)3L′][HL′=maltol, dibenzoylmethane or 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmhypy)] and [RuIIIX2(EPh3)2L″] complexes (X=Cl, Br; E=As or P; L″=hypy, dmhypy) have been prepared, and characterized by spectroscopic techniques. Their redox behaviour was studied by cyclic voltammetry. Most of the complexes were found to be effective catalysts for the oxidation ofp-methoxybenzyl alcohol to the corresponding aldehyde in the presence ofN-methylmorpholine-N-oxide as co-oxidant.  相似文献   

7.
Trifluoromethylation of AuCl3 by using the Me3SiCF3/CsF system in THF and in the presence of [PPh4]Br proceeds with partial reduction, yielding a mixture of [PPh4][AuI(CF3)2] ( 1′ ) and [PPh4][AuIII(CF3)4] ( 2′ ) that can be adequately separated. An efficient method for the high‐yield synthesis of 1′ is also described. The molecular geometries of the homoleptic anions [AuI(CF3)2]? and [AuIII(CF3)4]? in their salts 1′ and [NBu4][AuIII(CF3)4] ( 2 ) have been established by X‐ray diffraction methods. Compound 1′ oxidatively adds halogens, X2, furnishing [PPh4][AuIII(CF3)2X2] (X=Cl ( 3 ), Br ( 4 ), I ( 5 )), which are assigned a trans stereochemistry. Attempts to activate C? F bonds in the gold(III) derivative 2′ by reaction with Lewis acids under different conditions either failed or only gave complex mixtures. On the other hand, treatment of the gold(I) derivative 1′ with BF3?OEt2 under mild conditions cleanly afforded the carbonyl derivative [AuI(CF3)(CO)] ( 6 ), which can be isolated as an extremely moisture‐sensitive light yellow crystalline solid. In the solid state, each linear F3C‐Au‐CO molecule weakly interacts with three symmetry‐related neighbors yielding an extended 3D network of aurophilic interactions (Au???Au=345.9(1) pm). The high $\tilde \nu $ CO value (2194 cm?1 in the solid state and 2180 cm?1 in CH2Cl2 solution) denotes that CO is acting as a mainly σ‐donor ligand and confirms the role of the CF3 group as an electron‐withdrawing ligand in organometallic chemistry. Compound 6 can be considered as a convenient synthon of the “AuI(CF3)” fragment, as it reacts with a number of neutral ligands L, giving rise to the corresponding [AuI(CF3)(L)] compounds (L=CNtBu ( 7 ), NCMe ( 8 ), py ( 9 ), tht ( 10 )).  相似文献   

8.
The review surveys the data on the reactions of phosphorus and arsenic ylides with compounds containing E=X bonds (E = C, Si, Ge, or Sn; X = C or S), cyclic oligomers (R2ES)n (n = 2 or 3), and heavier analogs of carbenes. These reactions give rise to two new classes of heteroorganic betaines containing the (+)E15—C—E14—X(–) (I) and (+)E15—C—E14(–) (II) (E15 = P or As; E14 = Si, Ge, or Sn; X = C or S) structural fragments. Procedures for the synthesis of these compounds, their reactivities, the X-ray diffraction structures, and the electronic structures established by high-level quantum-chemical calculations are considered in detail. The carbon analogs of betaines of type I, viz., compounds bearing the (+)P—C—C—X(–) fragment (III), are also discussed. The latter were long considered as possible intermediates in the reactions of compounds containing the polar C=X bond (X = C, O, S, NR, etc.) with phosphorus ylides (classical Wittig and Corey—Chaykovsky reactions and related processes).  相似文献   

9.
Quantum chemical calculations at the BP86/TZVPP//BP86/SVP level are performed for the tetrylone complexes [W(CO)5‐E(PPh3)2] ( W‐1 E ) and the tetrylene complexes [W(CO)5‐NHE] ( W‐2 E ) with E=C–Pb. The bonding is analyzed using charge and energy decomposition methods. The carbone ligand C(PPh3) is bonded head‐on to the metal in W‐1 C , but the tetrylone ligands E(PPh3)2 are bonded side‐on in the heavier homologues W‐1 Si to W‐1 Pb . The W? E bond dissociation energies (BDEs) increase from the lighter to the heavier homologues ( W‐1 C : De=25.1 kcal mol?1; W‐1 Pb : De=44.6 kcal mol?1). The W(CO)5←C(PPh3)2 donation in W‐1 C comes from the σ lone‐pair orbital of C(PPh3)2, whereas the W(CO)5←E(PPh3)2 donation in the side‐on bonded complexes with E=Si–Pb arises from the π lone‐pair orbital of E(PPh3)2 (the HOMO of the free ligand). The π‐HOMO energy level rises continuously for the heavier homologues, and the hybridization has greater p character, making the heavier tetrylones stronger donors than the lighter systems, because tetrylones have two lone‐pair orbitals available for donation. Energy decomposition analysis (EDA) in conjunction with natural orbital for chemical valence (NOCV) suggests that the W? E BDE trend in W‐1 E comes from the increase in W(CO)5←E(PPh3)2 donation and from stronger electrostatic attraction, and that the E(PPh3)2 ligands are strong σ‐donors and weak π‐donors. The NHE ligands in the W‐2 E complexes are bonded end‐on for E=C, Si, and Ge, but side‐on for E=Sn and Pb. The W? E BDE trend is opposite to that of the W‐1 E complexes. The NHE ligands are strong σ‐donors and weak π‐acceptors. The observed trend arises because the hybridization of the donor orbital at atom E in W‐2 E has much greater s character than that in W‐1 E , and even increases for heavier atoms, because the tetrylenes have only one lone‐pair orbital available for donation. In addition, the W? E bonds of the heavier systems W‐2 E are strongly polarized toward atom E, so the electrostatic attraction with the tungsten atom is weak. The BDEs calculated for the W? E bonds in W‐1 E , W‐2 E and the less bulky tetrylone complexes [W(CO)5‐E(PH3)2] ( W‐3 E ) show that the effect of bulky ligands may obscure the intrinsic W? E bond strength.  相似文献   

10.
The Raman and i.r. spectra of nasicon-type MIMIV2(PO4)3 rhombohedral phosphates (MI = Li, Na, K, Rb, Cs, Tl; MIV = Ge, Sn, Ti, Zr, Hf) exhibit intricate relationships between the spectra and the chemical composition. The pattern of the PO4 stretching frequencies is more or less strongly modified by the nature of both MIV and MI cations. Still greater variations are observed in the medium and low frequency region, although some external modes have been identified by the study of mass effects (6Li7Li, 70Ge76Ge, ZrHf etc.). The origin of this complex behaviour is discussed in relation to the structure.  相似文献   

11.
A reinvestigation of the reaction of Ir(CO)Cl(PPh3)2, 1 with HSnPh3 has revealed that the oxidative-addition product Ir(CO)Cl(PPh3)2(H)(SnPh3), 2 has the H and SnPh3 ligands in cis-related coordination sites. Compound 2 reacts with a second equivalent of HSnPh3 by a Cl for H ligand exchange to yield the new compound H2Ir(CO)(SnPh3)(PPh3)2, 3. Compound 3 contains two cis- related hydride ligands. Under an atmosphere of CO, 1 reacts with HSnPh3 to replace the Cl ligand with SnPh3 and one of the PPh3 ligands with a CO ligand and also adds a second equivalent of CO to yield the 5-coordinate complex Ir(CO)3(SnPh3)(PPh3), 4. Compound 4 reacts with HSnPh3 by loss of CO and oxidative addition of the Sn-H bond to yield the 6-coordinate complex HIr(CO)2(SnPh3)2(PPh3), 5 that contains two trans-positioned SnPh3 ligands.  相似文献   

12.
Stable ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′‐hydroxychalcones) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′‐hydroxychalcones in benzene under reflux. The new complexes were characterized by analytical and spectroscopic (IR, electronic 1H, 31P and 13C NMR) data. They were assigned an octahedral structure. The complexes exhibited catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N‐methylmorpholine‐N‐oxide (NMO) as co‐oxidant and were also found to be efficient transfer hydrogenation catalysts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Syntheses and Structure of Chiral Metallatetrahedron Complexes of the Type [Re2(M1PPh3)(M2PPh3)(μ‐PCy2)(CO)7C≡CPh] (M1 = Ag, Au; M2 = Cu, Ag, Au) From the reaction of Li[Re2(μ‐H)(μ‐PCy2)(CO)7(C(Ph)O)] ( 1 ) with Ph3AuC≡CPh both benzaldehyde and the trinuclear complex Li[Re2(AuPPh3)(μ‐PCy2)(CO)7C≡CPh] ( 2a ) were obtained in high yield. The complex anion was isolated as its PPh4‐salt 2b . The latter reacts with coinage metal complexes PPh3M2Cl [M2 = Cu, Ag, Au] to give chiral heterometallatetrahedranes of the general formula [Re2(AuPPh3)(M2PPh3)(μ‐PCy2)(CO)7C≡CPh] (M2 = Cu 3a , Ag 3b , Au 3c ). The corresponding complex [Re2(AgPPh3)2(μ‐PCy2)(CO)7C≡CPh] ( 3d ) is obtained from the reaction of [Re2(AgPPh3)2(μ‐PCy2)(CO)7Cl] ( 4 ) with LiC≡CPh. 3d undergoes a metathesis reaction in the presence of PPh3CuCl giving [Re2(AgPPh3)(CuPPh3)(μ‐PCy2)(CO)7C≡CPh] ( 3e ) and PPh3AgCl. Analogous metathesis reactions are observed when 3c is reacted with PPh3AgCl or PPh3CuCl giving 3a or 3b , respectively. The reaction of 1 with PPh3AuCl gives benzaldehyde and Li[Re2(AuPPh3)(μ‐PCy2)(CO)7Cl] ( 5a ) which upon reaction with PhLi forms the trinuclear complex Li[Re2(AuPPh3)(μ‐PCy2)(CO)7Ph] ( 6a ). Again this complex was isolated as its PPh4‐salt 6b . In contrast to 2b , 6b reacts with one equivalent of Ph3PAuCl by transmetalation to give Ph3PAuPh and PPh4[Re2(AuPPh3)(μ‐PCy2)(CO)7Cl] ( 5b ). The X‐ray structures of the compounds 3a , 3b , 3e and 4 are reported.  相似文献   

14.
Preparation of Germanium-Manganese-, Germanium-Rhenium- and Tin-Rhenium-Clusters of the Type M2(CO)8[μ-EXM(CO)5]2 (M = Mn, E = Ge, X = Br, I; M = Re, E = Ge or Sn, X = I or Cl, Br, I) The clusters Re2(CO)8[μ-SnXRe(CO)5]2 are prepared by reaction of Re2(CO)10 and SnX2 in a Schlenk-tube under release of pressure (X = Cl, Br, I) or in a sealed glass tube (X = Br, I). As central structural unit a four-membered Re2Sn2 ring has to be assumed. This unit can be opened again by reaction with CO under pressure. X2Sn[Re(CO)5]2, which is also formed during the preparation of the clusters in dependance of the CO-pressure, indicates insertion of SnX2 into the Re—Re bond to be the primary step. The corresponding clusters M2(CO)8[μ-GeXM(CO)5]2 (M = Mn, X = Br, I; M = Re, X = I) are prepared by reaction of GeI2 and M2(CO)10 or of I2Ge[Mn(CO)5]2 and Mn2(CO)10 or of Br3GeMn(CO)5 and BrMn(CO)5. Ir frequencies of the new clusters are assigned.  相似文献   

15.
The reaction of [Pt2(μ-S)2(P-P)2] (P-P=2PPh3, 2PMe2Ph, dppf) [dppf=1,1-bis(diphenylphosphino)ferrocene] with cis-[M(C6F5)2(PhCN)2] (M=Ni, Pd) or cis-[Pt(C6F5)2(THF)2] (THF=tetrahydrofuran) afforded sulfide aggregates of the type [{Pt23-S)2(P-P)2}M(C6F5)2] (M=Ni, Pd, Pt). X-ray crystal analysis revealed that [{Pt23-S)2(dppf)2}Pd(C6F5)2], [{Pt23-S)2(PPh3)2}Ni(C6F5)2], [{Pt23-S)2(PPh3)2}Pd(C6F5)2] and [{Pt23-S)2(PMe2Ph)2}Pt(C6F5)2] have triangular M3S2 core structures capped on both sides by μ3-sulfido ligands. The structural features of these polymetallic complexes are described. Some of them display short metal-metal contacts.  相似文献   

16.
The reaction of [RhCl2(HPhL)(PhL)] with MII(ClO4)2·6H2O in presence of alkali has furnished trinuclear [RhCl2(PhL)2]2M(H2O)2·H2O (HPhL is phenylazobenzaldoxime; M = Mn, Co, Ni). A similar reaction with MI(PPh3)2NO3 yielded binuclear [RhCl2(PhL)2]M(PPh3)2 (M = Cu, Ag). In these molecules the oximato group acts as a bridge between RhIII (bonded at N) and MII or MI (bonded at O). In structurally characterized [RhIIICl2(PhL)2]2Mn(H2O)2.H2O the centrosymmetric distorted octahedral MnO6 coordination sphere is spanned by four oximato oxygen atoms and two water molecules lying in trans position. In the lattice the neighbouring molecules are held together by H2O⋯H2O⋯H2O hydrogen bonds generating infinite zigzag chains. The manganese atoms lie parallel to the C-axis, the shortest Mn...Mn distance being 7.992 ?. Magnetic exchange interactions if any are small as seen in room temperature magnetic moments. The manganese system displays a strong EPR signal near g = 2.00. In the complex [RhCl2(PhL)2]Cu(PPh3)2 the copper atom is coordinated to two oximato oxygen atoms and the two phosphorus atoms in a distorted tetrahedral geometry. The softness of the phosphine ligand is believed to sustain the stable coordination of hard oximato oxygen to soft CuI. The coordination sphere of the RhIII atom in both the complexes is uniformly trans-RhN4Cl2.  相似文献   

17.
A series of new hexa‐coordinated ruthenium(II) hydroxyquinoline–thiosemicarbazone complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = hydroxyquinoline–thiosemicarbazone) were synthesized by reacting ruthenium precursor complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with hydroxyquinoline–thiosemicarbazone ligands in ethanol. The new complexes were characterized by analytical and spectroscopic (FT‐IR, UV–visible, NMR (1H, 13C and 31P) and fast atom bombardment (FAB)–mass spectrometric methods. Based on the spectral results, an octahedral geometry was assigned for all the complexes. The new complexes showed good catalytic activity for the conversion of aldehydes to amides in the presence of hydroxylamine hydrochloride–sodium bicarbonate and for the oxidation of alkanes into their corresponding alcohols and ketones in the presence of m‐chloroperbenzoic acid. The complexes also catalyzed the N‐alkylation of benzylamine in the presence of KOtBu in alcohol medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The reactivity of mixed [organohydrazido(1-)][organohydrazido(2-)]molybdenum(VI) complexes [Mo(NHNRPh)(NNRPh)(acac)X2] {R?=?Ph, X?=?Br (1); R?=?Ph, X?=?I (2) and R?=?Me; X?=?I (3)} with tertiary phosphines as PPh3, PMePh2 and PMe2Ph are examined. The syntheses of [Mo(NNPh2)2Br2(PPh3)] (4), [Mo(NNPh2)2Br2(PMePh2)2] (5), [Mo(NNPh2)2Br2(PMe2Ph)2] (6), [Mo(NNPh2)2(acac)I(PPh3)] (7), [Mo(NNPh2)2(acac)(PMePh2)2]+I? (8) and [Mo(NNMePh)2(acac)(PMePh2)2]+I? (9) are reported. All complexes were characterized by elemental analysis, UV-visible, IR, 1H and 31P{H} NMR spectroscopy.  相似文献   

19.
The metathetical reactions of a) [Li(tmeda)]2[(S)C(PPh2S)2] (Li2? 3 c ) with CuCl2 and b) [Li(tmeda)]2[(SPh2P)2CSSC(PPh2S)2] (Li2? 4 c ) with two equivalents of CuCl both afford the binuclear CuI complex {Cu2[(SPh2P)2CSSC(PPh2S)2]} ( 5 c ). The elongated (C)S? S(C) bond (ca. 2.54 and 2.72 Å) of the dianionic ligand observed in the solid‐state structure of 5 c indicate the presence of diradical character as supported by theoretical analyses. The treatment of [Li(tmeda)]2[(SPh2P)2CSeSeC(PPh2S)2] (Li2? 4 b ) and Li2? 4 c with AgOSO2CF3 produce the analogous AgI derivatives, {Ag2[(SPh2P)2CEEC(PPh2S)2]} ( 6 b , E=Se; 6 c , E=S), respectively. The diselenide complex 6 b exhibits notably weaker Ag? Se(C) bonds than the corresponding contacts in the CuI congeners, and the 31P NMR data suggest a possible isomerization in solution. In contrast to the metathesis observed for CuI and AgI reagents, the reactions of Li2? 4 b and Li2? 4 c with Au(CO)Cl involve a redox process in which the dimeric dichalcogenide ligands are reduced to the corresponding monomeric dianions, [(E)C(PPh2S)2]2? ( 3 b , E=Se; 3 c , E=S), and one of the gold centers is oxidized to generate the mixed‐valent AuI/AuIII complexes, {Au[(E)C(PPh2S)2]}2 ( 7 b , E=Se; 7 c , E=S), with relatively strong aurophilic AuI???AuIII interactions. The new compounds 5 c , 6 b , c and 7 b , c are characterized in solution by NMR spectroscopy and in the solid state by X‐ray crystallography ( 5 c , 6 b , 7 b and 7 c ) and by Raman spectroscopy ( 5 c and 6 c ). The UV‐visible spectra of coinage metal complexes of the type 5 , 6 and 7 are discussed in the light of results from theoretical analyses using time‐dependent density functional theory.  相似文献   

20.
The first charge‐neutral Lewis base adducts of tin(IV) tetraazide, [Sn(N3)4(bpy)], [Sn(N3)4(phen)] and [Sn(N3)4(py)2], and the salt bis{bis(triphenylphosphine)iminium} hexa(azido)stannate [(PPN)2Sn(N3)6] (bpy = 2,2′‐bipyridine; phen = 1,10‐phenanthroline; py = pyridine; PPN = N(PPh3)2) have been prepared using covalent or ionic azide‐transfer reagents and ligand‐exchange reactions. The azides were isolated on the 0.3 to 1 g scale and characterized by IR and NMR spectroscopies, microanalytical and thermal methods and their molecular structures determined by single‐crystal XRD. All complexes have a distorted octahedral Sn[N]6 coordination geometry and possess greater thermal stability than their Si and Ge homologues. The nitrogen content of the adducts of up to 44 % exceed any SnIV compound known hitherto.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号