首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The homopolymer of 2-tert-butyl-6-vinylnaphthalene (BVN) and its copolymers with styrene were prepared to examine the effects of the bulky tert-butyl groups on singlet energy migration and excimer formation among the naphthalene chromophores. The intensity of naphthalene excimer emission relative to that of monomer emission was found to depend linearly on the concentration of the potential excimer forming site, i.e., the BVN dyad fraction of the polymer. The rate of fluorescence quenching by biacetyl, on the other hand, increased only slightly with the increase in the BVN content. These results are consistent with the slow energy hopping model and suggest that the neighboring naphthalene chromophores are virtually isolated from one another owing to the unfavorable interactions of the tert-butyl groups.  相似文献   

6.
Fluorescence polarization and quenching measurements were used to examine intramolecular energy migration for poly(N‐vinyl carbazole) and copolymers of N‐vinyl carbazole with methyl methacrylate. Quenching measurements of the carbazole fluorescence by CCl4 were performed in dilute solution in toluene, and fluorescence anisotropy, r, was measured for the chains dispersed in a solid matrix of poly(methyl methacrylate) (PMMA). The results suggested that the chains with a high carbazole content, that is, a high content of excimer trapping sites, do not show the highest values of the singlet energy‐migration rate. Isotropies, r?1, of the samples in vitrified PMMA corroborated such conclusions. Molecular dynamics simulations on isotactic and syndiotactic trichromophoric copolymer fragments were used to obtain parameters related to the energy‐transfer process as a function of the methyl methacrylate content. The parameters from the simulations supported the interpretation of the experiments. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1615–1626, 2003  相似文献   

7.
Efficient intermolecular excimer emission is observed for solutions of poly(2-naphthyl methacrylate) and copolymers of 2-naphthyl methacrylate and methyl methacrylate, only above a critical concentration. From analysis of the dependence of this concentration upon the polymer molecular weight and the thermodynamic character of the solvent, it is concluded that the results cannot be explained only in terms of an excluded volume effect, and that the different behaviour for dilute and concentrated regions is mainly a consequence of a change in the factors which control the rate of intermolecular excimer formation. The efficient excimer formation in the concentrated solutions is attributed to the contribution of migration of the excited energy to the formation of the excimeric pair.  相似文献   

8.
Styrene-acrylonitrile copolymers, like many other copolymers containing styrene, exhibit both normal and excimer fluorescence. We have shown that the ratio of the excimer to monomer fluorescence intensities in random styrene-acrylonitrile copolymers is linearly dependent upon the concentration of styrene-styrene bonds in the copolymer. This observation is consistent with a photophysical model which allows the energy absorbed by styrene units to migrate freely along the copolymer chain. Some of the energy is emitted in the form of normal fluorescence; some of the energy, trapped by neighbouring styrene-styrene pairs suitably oriented to allow excimer formation, is emitted as excimer fluorescence. The fluorescence characteristics of acrylonitrile-styrene copolymers are contrasted with those of methyl methacrylate-styrene copolymers, in which the methylmethacrylate sequences are believed to present partial barriers to energy migration along the copolymer chains.  相似文献   

9.
Styrene-terminated poly(2-acetoxyethyl methacrylate) macromonomer (EBA), methacrylate-terminated poly(2-acetoxyethyl methacrylate) macromonomer (MPA), and methacrylate-terminated poly(methyl methacrylate) macromonomer (MPM) were synthesized and subjected to polymerization and copolymerization by a free-radical polymerization initiator (AIBN). EBA and MPA were homopolymerized at various concentrations. EBA exhibited higher reactivity than styrene. The reactivity of MPA, however, was almost equal to that of glycidyl methacrylate. Cumulative copolymer compositions were determined by GPC analysis of copolymerization products. The reactivity ratios estimated were ra = 0.95 and rb , = 0.90 for EBA macromonomer (a)-methyl methacrylate (b) copolymerization. These values were not consistent with literature values for the styrene-methyl methacrylate and p-methoxy-styrene-methyl methacrylate systems. The reactivity ratios estimated for MPA and 2-bromoethyl methacrylate were ra - 0.95 and rb , = 0.98; equal to the glycidyl methacrylate-2-bromoethyl methacrylate system. MPA or MPM was also copolymerized with styrene, and the reactivity ratios were ra = 0.40, ra = 0.60 and ra = 0.39, ra = 0.58, respectively. These estimates were in good agreement with the reactivity ratios for glycidyl methacrylate and styrene. Thus, no effect of molecular weight was observed for both copolymerization systems.  相似文献   

10.
Poly(4-vinylbiphenyl) and copolymers of methyl methacrylate and 4-vinylbiphenyl show both monomeric (λmax = 325 nm) and excimer (λmax = 380 nm) fluorescence. The quantum yield of excimer emission increases and the monomeric emission decreases with increase in the fraction of vinylbiphenyl units in the copolymer. The decrease of the monomeric emission is closely related to a decrease in singlet lifetime. These results are interpreted in terms of a kinetic controlled excimer formation. Comparison of the emission in the homo and copolymers with that of the dimeric model compound shows that excimer formation in the polymer strongly depends upon the possibility of energy migration along sequences of vinylbiphenyl units. This conclusion is considered as of particular relevance due to the change in geometry of the biphenyl unit upon excitation.  相似文献   

11.
This article deals with the synthesis of hydrophilic methacrylic monomers derived from ethyl pyrrolidone [2‐ethyl‐(2‐pyrrolidone) methacrylate (EPM)] and ethyl pyrrolidine [2‐ethyl‐(2‐pyrrolidine) methacrylate (EPyM)] and their respective homopolymers. For the determination of their reactivity in radical copolymerization reactions, both monomers were copolymerized with methyl methacrylate (MMA), the reactivity ratios being calculated by the application of linear and nonlinear mathematical methods. EPM and MMA had ratios of rEPM = 1.11 and rMMA = 0.76, and this indicated that EPM with MMA had a higher reactivity in radical copolymerization processes than vinyl pyrrolidone (VP; rVP = 0.005 and rMMA = 4.7). EPyM and MMA had reactivity ratios of rEPyM = 1.31 and rMMA = 0.92, and this implied, as for the EPM–MMA copolymers, a tendency to form random or Bernoullian copolymers. The glass‐transition temperatures of the prepared copolymers were determined by differential scanning calorimetry (DSC) and were found to adjust to the Fox equation. Total‐conversion copolymers were prepared, and their behavior in aqueous media was found to be dependent on the copolymer composition. The swelling kinetics of the copolymers followed water transport mechanism case II, which is the most desirable kinetic behavior for a swelling controlled‐release material. Finally, the different states of water in the hydrogels—nonfreezing water, freezing bound water, and unbound freezing water—were determined by DSC and found to be dependent on the hydrophilic and hydrophobic units of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 395–407, 2003  相似文献   

12.
Phosphorescence depolarization measurements, under steady state polarized excitation, have been used to examine the relaxation behavior of bulk poly(methyl methacrylate) (PMMA). Poly(methyl methacrylate) bearing phosphorescent labels has been synthesized by copolymerization of small quantities of acenaphthylene (I), 1-vinylnaphthalene (II), 2-vinylnaphthalene (III), 1-naphthyl methacrylate (IV), and 2-naphthyl methacrylate (V), respectively, with methyl methacrylate. In no case was depolarization of emission due to probe rotation apparent below the onset of the β-relaxation of the polymer. Rotation of label V was characterized by an activation energy of 94 kJ mole?1 in excellent agreement with that of the β relaxation measured by conventional relaxation techniques. This result clearly implicates ester motion in the β relaxation. No motion of label I, which cannot move independently of the polymer backbone, was evident in the vicinity of the β relaxation. Above 378 K the activation energy for rotational relaxation of label I of 460 kJ mole?1 is in excellent agreement with published data for the α transition in PMMA. This result is in accord with the general assumption that backbone segmental motion is involved in the α relaxation. However, backbone motion of lesser temperature dependence (Ea = 115 kJ mole?1) is apparent from depolarization behavior of probe I between 343 and 378 K. Label II shows three regions of relaxation behavior. In the temperature range above the β transition motion of the label independent of the polymer is evident (Ea = 44 kJ mole?1). At temperatures in excess of 343 K this motion becomes cooperative with that of the backbone yielding activation energies comparable to those obtained in system I. Label III, while exhibiting depolarization characteristics similar to those of label II in the vicinity of the β relaxation, emitted insufficient intensity to permit estimation of an energy of activation for the motion. The phosphorescence of label IV was completely depolarized over the entire temperature range studied. While phosphorescence intensity and lifetime data may be used to detect the existence of polymeric transitions, the photophysical behavior of the naphthalene species studied is independent of the attachment to the polymer and does not primarily yield information regarding the polymer relaxations.  相似文献   

13.
Effects of tacticity and steric hindrance on excimer formation were investigated in isotactic and atactic polystyrene, poly(o-methylstyrene), poly(m-methylstyrene), and poly(p-methylstyrene) in the presence and absence of a quencher (CCl4). The calculated rate constants for excimer formation in the isotactic polymers except for poly(o-methylstyrene) were almost the same and larger than those in the corresponding atactic polymers. These results indicate that excimer formation was due to not only rotational sampling but also energy migration to trapping sites. It was found that steric hindrance on excimer formation was intimately related to the excition diffusion length in the polymer chain.  相似文献   

14.
15.
Triad cotacticities of alternating copolymers of methyl methacrylate with styrene prepared in the presence of zinc chloride, ethylaluminium sesquichloride, and ethylboron dichloride are investigated from the mechanistic point of view by means of 1H- and 13C-NMR. The cotacticities from 1H-NMR spectra are obtained accurately by using α-d-styrene in the place of styrene and by measuring the spectra on the copolymer in o-dichlorobenzene at 170°C. The relative intensities of three peaks of the splitting signal for the methoxy protons in the nonalternating copolymers obtained by the use of benzoyl peroxide in the absence of metal halides agree well with the cotacticity distribution calculated theoretically by the Lewis-Mayo mechanism with the stereoregulation following Bernoullian statistics. The splitting signals in the 1H- and 13C-NMR spectra of the alternating copolymers prepared in the presence of metal halides cannot be explained by the same mechanism. The relative intensities of three peaks of the splitting signals for the methoxy protons and for the carbonyl carbon in the methyl methacrylate unit (the contents of cotactic triads centered by the methyl methacrylate unit) are not equal to those for the aromatic C1 carbon in the styrene unit (the contents of cotactic triads centered by styrene unit). The value of f2Y - 4fxfz is not equal to zero, where fx, fy, and fz are the cosyndiotactic, coheterotactic, and coisotactic triad contents, respectively, in the alternating copolymer. Copolymers obtained in the presence of zinc chloride are not exactly equimolar alternating but always contain a methyl methacrylate unit in excess, and the relative intensities of the three peaks for the aromatic C1 carbon change with the copolymer composition. These results are explained by a proposed mechanism: the alternating copolymerization proceeds through the homopolymerization of a ternary molecular complex composed of a metal halide, methyl methacrylate, and styrene, accompanied with the stereoregulation following first-order Markovian statistics; the increase of methyl methacrylate content in the copolymer prepared in the presence of zinc chloride is caused by the participation of the binary molecular complex composed of a metal halide and methyl methacrylate in addition to the ternary molecular complex.  相似文献   

16.
The ceric ion-initiated graft copolymerization of methyl methacrylate onto wood cellulose was found to depend on the concentrations of initiator, monomer, and cellulose. The structure of cellulose—methyl methacrylate graft copolymers was studied by hydrolyzing away the cellulose backbone to isolate the grafted poly(methyl methacrylate) branches. The molecular weights and molecular weight distributions of the grafted poly(methyl methacrylate) were determined by using gel-permeation chromatography. The number-average (M?n) molecular weights ranged from 36 000 to 160 000 and the polydispersity ratios (M?w/M?n) varied from 4.0 to 7.0. The grafting frequency or the number of poly(methyl methacrylate) branches per cellulose chain calculated from the per cent grafting and molecular weight data varied from 0.38 to 3.2. The structure of cellulose—methyl methacrylate graft copolymers and the effect of stepwise addition of initiator on the structure are discussed.  相似文献   

17.
Copolymers of 2,2,6,6-tetramethylpiperidinyl methacrylate (TPMA) with styrene (S) and with methyl methacrylate (MMA) were synthesized using AIBN as initiator. S–TPMA copolymers from feed ranging from 0.10–0.80 mole fractions TPMA and MMA-TPMA copolymers from feed of 0.04–0.85 mole fractions TPMA were used in the determination of monomer reactivity ratios r1, r2. Four different methods were employed in the calculations of r1 and r2 and all calculated results were in good agreement with each other. The structure of S–TPMA copolymers was inferred to be of an alternating nature while that of MMA–TPMA copolymers was random. Both copolymers are potential hindered amine light stabilizers (HALS) and are expected to be less extractable from, and more compatible with, polystyrene and poly(methyl methacrylate) base polymers.  相似文献   

18.
The ratios of the intensity of excimer and monomer emissions, denoted IE/IM, in poly(N‐vinyl carbazole) and copolymers of N‐vinyl carbazole and methyl methacrylate were measured with steady‐state fluorescence. Measurements were performed in dilute solutions of several fluid solvents at 25 °C and in a solid matrix of poly(methyl methacrylate) at room temperature. The values of IE/IM depended on the nature of the solvent, the emission wavelength, and the copolymer composition. Molecular dynamics simulations were performed for diastereoisomers of 2,4‐di(N‐carbazolyl)pentane and for isotactic and syndiotactic trichromophoric copolymer fragments to assist in the identification of the thermally accessible conformations capable of forming intramolecular excimers and the configurational relationship of the carbazole units in these complexes. Nearest neighbor carbazole groups made the dominant contribution to the excimers. Excimers were more likely in isotactic sequences than in syndiotactic sequences, as was also the case for the low‐energy excimer arising from the complete overlap of two carbazole units. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1272–1281, 2001  相似文献   

19.
Optically active N-bornylmaleimide (NBMI) was copolymerized with styrene, methyl methacrylate, and vinylidene chloride with a free-radical catalyst to obtain optically active copolymers. The monomer reactivity ratios for the radical copolymerization of NBMI (M2) with styrene, methyl methacrylate, and vinylidene chloride were: ST-NBMI, r1 = 0.13, r2 = 0.05; MMA-NBMI, r1 = 2.02, r2 = 0.16; VCl2-NBMI, r1 = 1.15, r2 = 0.47. The Q-e values for NBMI were Q2 = 0.48 and e2 = +1.47. The specific rotation and optical rotatory dispersion of these copolymers were measured. The correlation between the specific rotation and composition of these copolymers was not linear. The value of λc for each copolymer was independent of the copolymer composition and the comonomer, being 260 mμ for the St-NBMI system, 262 mμ for the MMA-system, and 260 mμ for the VCl2-NBMI system. The effects of solvents and temperature on the specific rotation of these copolymers were investigated.  相似文献   

20.
The fluorescence of a series of copolymers of 2-naphthyl methacrylate (2-NM) and methyl methacrylate (MMA) with various contents of 2-NM (obtained in chloroform, carbon tetrachloride and acetonitrile) was investigated. A linear dependence between the ratio of the excimer to monomer emission intensities (ID/IM) and the diad fraction (fnn) of 2-NM monomer units was established. The relationship between ID/IM and fnn · In (In = the mean sequence length of 2-NM units) fits a logarithmic curve. The results indicate that the excimer emission is determined mainly by the nearest neighbour naphthalene-containing monomer units in the copolymer chain. The copolymers obtained in acetonitrile have higher values of ID/IM than those obtained in chloroform and carbon tetrachloride. This difference is due to the higher content of mm-triads in copolymers from acetonitrile, confirmed by 1H-NMR analysis of the samples of poly(methyl methacrylate) formed from copolymers of 2-NM and MMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号