共查询到15条相似文献,搜索用时 15 毫秒
1.
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the atomic and electronic structure of the group-IV adsorbates (C, Si, Ge, Sn, and Pb) on the GaAs(0 0 1)-(1 × 2) surface considered in two different models: (i) non-segregated Ga-IV-capped structure and (ii) segregated structure in which the group-IV atoms occupying the second layer while the As atom floats to the surface. The non-segregated structure is energetically more favorable than the segregated structure for Sn and Pb, whereas it is the other way around for C, Si, and Ge. 相似文献
2.
The computational formalism of the full-potential all-electron linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method has been employed to study the relaxation of the δ-Pu(1 1 1) surface and the consequent effects for atomic adsorption of C, N, and O atoms on this surface. The underlying theoretical principle is the generalized gradient approximation to density functional theory (GGA-DFT) and the surface was modeled by a five-layer slab with a (2×2) surface unit cell. Upon relaxation of the slab, the interlayer separation between the surface and the subsurface layers expanded by 7.1% with respect to the bulk interlayer separation, while the separation between the subsurface and central layers expanded by 0.4%. To study adsorption on the surface, the adatoms were allowed to approach the surface at four high symmetry adsorption sites, namely, the top, bridge, hollow FCC, and hollow HCP sites, the adlayer structure corresponding to a coverage of 0.25 of a monolayer in all cases. The hollow FCC adsorption site was found to be the most stable site for C and N with chemisorption energies of 6.420 and 6.549 eV, respectively, while the hollow HCP adsorption site was found to be the most stable site for O with a chemisorption energy of 7.858 eV. The respective distances of the C, N, and O adatoms from the surface were found to be 1.22, 1.09, and 1.22 Å. The work function and net magnetic moments, respectively, increased and decreased in all cases upon chemisorption compared with the bare δ-Pu(1 1 1) surface. The electronic structure of the interactions between the adsorbates and the substrate is discussed in detail. 相似文献
3.
The atomic and electronic properties of the adsorption of furan (C4H4O) molecule on the Si(1 0 0)-(2 × 2) surface have been studied using ab initio calculations based on pseudopotential and density functional theory. We have considered two possible chemisorption mechanisms: (i) [4 + 2] and (ii) [2 + 2] cycloaddition reactions. We have found that the [4 + 2] interaction mechanism was energetically more favorable than the [2 + 2] mechanism, by about 0.2 eV/molecule. The average angle between the CC double bond and Si(1 0 0) surface normal was found to be 22°, which is somewhat smaller than the experimental value of 28°, but somewhat bigger than other theoretical value of 19°. The electronic band structure, chemical bonds, and theoretical scanning tunneling microscopy images have also been calculated. We have determined a total of six surface states (one unoccupied and five occupied) in the fundamental band gap. Our results are seen to be in good agreement with the recent near edge X-ray absorption fine structure and high resolution photoemission spectroscopy data. 相似文献
4.
In this study we employ a state-of-the-art pseudopotential method to perform local density of states (LDOS) calculations of n × 1 (n = 5, 7) and (8 × 2) reconstructions induced by the adsorption of rare-earth samarium (RE) in the submonolayer range. We conducted a full comparison between images from scanning tunneling microscopy (STM) and theoretical LDOS. Images taken of both filled and empty states show the effects induced by honeycomb chains and Seiwatz chains. We conclude that LDOS calculations are consistent with the assignment of features observed experimentally by STM. 相似文献
5.
The adsorption of cyanide (CN) or oxygen atom, as well as the coadsorption of CN + O on Cu (1 0 0) surface is studied by using density functional theory (DFT) and the cluster model method. Cu14 cluster is used to simulate the surface. Perpendicular and parallel bonding geometries of CN adsorbed on Cu (1 0 0) surface are considered, respectively. The present calculations show that the CN may be absorbed on top and bridge sites by carbon atom of cyanide (C-down), and C-down on top site is the most favorable. The adsorbed C-N stretch frequencies compared with that of the gaseous CN species are all red-shifted, except the C-down on top site. The charge transfer from the surface to the CN species leads to an increase in work function for the Cu surface. The oxygen atom adsorbed on the four-fold hollow site of Cu (1 0 0) is the most favorable, and is consistent with the experimental study. The coadsorption of O at a four-fold hollow site tends to block adsorption of CN at the nearby sites. If O coverage increases, the CN may be adsorbed on the top and bridges sites with the C-down model. The reaction CN + O → OCN on the Cu (1 0 0) is predicted to be exothermic, and formed OCN species may be stably absorbed on the Cu (1 0 0). 相似文献
6.
Dong Shu-bao Feng Er-yin Huang Wu-ying Cui Zhi-feng 《Czechoslovak Journal of Physics》2005,55(1):27-33
Molecular reaction dynamics of Cl + H2 (D2) has been studied on the latest analytical potential energy surface called BW3 using the Monte Carlo quasi-classical trajectory method. Excitation functions, differential cross sections and angular distributions of HCl and DCl products have been calculated. The excitation functions of the Cl (2P3/2) + n-H2 and Cl(2P3/2) + n-D2 reactions are also studied. The results are compared with those of quasi-classical trajectory [M. Alagia et al.: Phys. Chem. Chem. Phys. 2 (2000); F. J. Aoiz et al.: J. Phys. Chem. 100 (1996)], quantum mechanical (QM) calculations [F. J. Aoiz et al.:J. Chem. Phys. 115 (2001)] and experimental data [S. H. Lee et al.: J. Chem. Phys. 110 (1999); F. Dong et al.: J. Chem. Phys. 115 (2001)]. Discussions are given to some new results. 相似文献
7.
By means of density functional theory, the Mo(CO)6‐catalyzed intramolecular [2 + 2] or [2 + 2 + 1] cycloaddition reaction of 5‐allenyl‐1‐ynes was investigated. All the intermediates and transition states were optimized completely at B3LYP/6‐311++G(d,p) level (LANL2DZ(f) for Mo). Calculations indicate that the complexation of 5‐allenyl‐1‐ynes with Mo(CO)6 occurred preferentially at the triple bond to give the complex M1 and then the complexation with the distal double bond of the allenes generates the complex M5 . In this reaction, Mo(CO)6‐catalyzed intramolecular [2 + 2] cycloaddition is more favorable than [2 + 2 + 1] cycloaddition. The reaction pathway Mo(CO)6 + R → M5 → T7 → M12 → M13 → T11 → M18 → P4 is the most favorable one, and the most dominant product predicted theoretically is P4 . The solvation effect is remarkable, and it decreases the reaction energy barriers. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
Diana Henao Juliana Murillo Pablo Ruiz Jairo Quijano Bárbara Mejía Lina Castañeda Rafael Notario 《Journal of Physical Organic Chemistry》2012,25(10):883-887
Theoretical calculations at the M05‐2X/6‐31+G(d) level of theory have been carried out in order to explore the nature of the mechanism of the thermal decomposition reactions of the β‐hydroxy ketones, 4‐hydroxy‐2‐butanone, 4‐hydroxy‐2‐pentanone, and 4‐hydroxy‐2‐methyl‐2‐pentanone in gas phase and in m‐xylene solution. The mechanism proposed is a one‐step process proceeding through a six‐membered cyclic transition state. A reasonable agreement between experimental and calculated activation parameters and rate constants has been obtained, the tertiary : secondary : primary alcohol rate constant ratio being calculated, at T = 503.15 K, as 5.9:4.7:1.0 in m‐xylene solution and 44.1:5.0:1.0 in the gas phase, compared with the experimental values, 3.7:1.3:1.0 and 13.5:3.2:1.0, respectively. The progress of the thermal decomposition reactions of β‐hydroxy ketones has been followed by means of the Wiberg bond indices. The lengthening of the O1–C2 bond with the initial migration of the H6 atom from O5 to O1 can be seen as the driving force for the studied reactions. Calculated synchronicity values indicate that the mechanisms correspond to concerted and highly synchronous processes. The transition states are “advanced”, nearer to the products than to the reactants. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
9.
Lihui Sun Jifan Hu Ling Zhang Feng Gao Yongjia Zhang Hongwei Qin 《Current Applied Physics》2011,11(6):1278-1281
The adsorption of CO molecule on the O2 pre-adsorbed LaFeO3 (0 1 0) surface has been investigated using a density functional theory calculation. The calculated results show that the most appropriate reaction occurs between the CO and the pre-adsorbed O2. After CO adsorption, the bonding mechanism between Fe site and the pre-adsorbed O2 is not modified, and the HOMO–LUMO energy gap of the M1 mode is narrowed, which is caused by the redistribution of electron density in the surface. 相似文献
10.
Density functional theory study of substituent effects on gas‐phase heterolytic Fe–O and Fe–S bond energies of m‐G‐C6H4OFe(CO)2(η5‐C5H5) and m‐G‐C6H4SFe(CO)2(η5‐C5H5) 下载免费PDF全文
Qing Zeng Zucheng Li Yi‐Bo Wang Huaqiang Zhai Bin Liu Ou Tao Ling Dong Jun Guan Yujie Zhang 《Journal of Physical Organic Chemistry》2017,30(1)
The knowledge of accurate bond strengths is a fundamental basis for a proper analysis of chemical reaction mechanisms. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe–O and Fe–S bond energies of (meta‐substituted phenoxy)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4OFp ( 1 )] and (meta‐substituted benzenethiolato)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4SFp ( 2 )] complexes. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G is NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that Tao–Perdew–Staroverov–Scuseria and Becke's power‐series ansatz from 1997 with dispersion corrections functionals can provide the best price/performance ratio and accurate predictions of ΔHhet(Fe–O)'s and ΔHhet(Fe–S)'s. The excellent linear free energy relations [r = 1.00 (g, 1e), 1.00 (g, 2b)] among the ΔΔHhet (Fe–O)'s and δΔG0 of O?H bonds of m‐G‐C6H4OH or ΔΔHhet(Fe–S)'s and ΔpKa's of S?H bonds of m‐G‐C6H4SH imply that the governing structural factors for these bond scissions are similar. And, the linear correlations [r = ?0.97 (g, 1 g), ?0.97 (g, 2 h)] among the ΔΔHhet (Fe–O)'s or ΔΔHhet(Fe–S)'s and the substituent σm constants show that these correlations are in accordance with Hammett linear free energy relationships. The inductive effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe–O)'s or ΔHhet(Fe–S)'s. The ΔΔHhet(Fe–O)'s(g) (1) and ΔΔHhet(Fe–S)'s(g)(2) follow the capto‐dative Principle. The substituent effects on the Fe–O bonds are much stronger than those on the less polar Fe–S bonds. Insight from this work may help the design of more effective catalytic processes. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
11.
Qing Zeng Zucheng Li Ling Dong Daxiong Han Rufeng Wang Xiangri Li Genben Bai 《Journal of Physical Organic Chemistry》2013,26(8):664-674
Metal–ligand bond enthalpy data can afford invaluable insights into important reaction patterns in organometallic chemistry and catalysis. In this paper, the Fe–O and Fe–S homolytic bond dissociation energies [ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s] of two series of para‐substituted phenoxydicarbonyl(η5‐cyclopentadienyl) iron [p‐G‐C6H4OFp ( 1 )] and (para‐substituted benzenethiolato)dicarbonyl(η5‐cyclopentadienyl) iron [p‐G‐C6H4SFp ( 2 )] were studied using Hartree–Fock and density functional theory (DFT) methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G are NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that DFT methods can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s. The remote substituent effects on ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s [ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s] can also be satisfactorily predicted. The good correlations [r = 0.98 (g, 1), 0.98 (g, 2)] of ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s in series 1 and 2 with the substituent σp+ constants imply that the para‐substituent effects on ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s originate mainly from polar effects, but those on radical stability originate from both spin delocalization and polar effects. ΔΔHhomo(Fe–O)'s ( 1 ) and ΔΔHhomo(Fe–S)'s ( 2 ) conform to the captodative principle. Insight from this work may help the design of more effective catalytic processes. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
G. Rakotovelo P. S. Moussounda M. F. Haroun P. Légaré A. Rakotomahevitra J. C. Parlebas 《The European Physical Journal B - Condensed Matter and Complex Systems》2007,57(3):291-297
Progress of scanning tunneling microscopy (STM) allowed to handle various molecules adsorbed on a given surface. New concepts
emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces
and adsorbed molecules at an atomic scale is thus particularly invaluable. In this work, within the framework of density functional
theory (DFT), we present an electronic and structural ab initio study of a BaTiO3 (001) surface (perovskite structure) in its paraelectric phase. As far as we know the atomic and molecular adsorption of
oxygen at surface is then analyzed for the first time in the literature. Relaxation is taken into account for several layers.
Its analysis for a depth of at least four layers enables us to conclude that a reasonable approximation for a BaTiO3 (001) surface is provided with a slab made up of nine plans. The relative stability of two possible terminations is considered.
By using a kinetic energy cut off of 400 eV, we found that a surface with BaO termination is more stable than with TiO2 termination. Consequently, a surface with BaO termination was chosen to adsorb either O atom or O2 molecule and the corresponding calculations were performed with a coverage 1 on a (1×1) cell. A series of cases with O2 molecule adsorbed in various geometrical configurations are also analyzed. For O2, the most favorable adsorption is obtained when the molecule is placed horizontally, with its axis, directed along the Ba-Ba
axis and with its centre of gravity located above a Ba atom. The corresponding value of the adsorption energy is -9.70 eV
per molecule (-4.85 eV per O atom). The molecule is then rather extended since the O–O distance measures 1.829 ?. By comparison,
the adsorption energy of an O atom directly located above a Ba atom is only -3.50 eV. Therefore we are allowed to conclude
that the O–O interaction stabilizes atomic adsorption. Also the local densities of states (LDOS) corresponding to various
situations are discussed in the present paper. Up to now, we are not aware of experimental data to be compared to our calculated
results. 相似文献
13.
Knowledge of the strength of the metal–ligand bond breaking and formation is fundamental for an understanding of the thermodynamics underlying many important stoichiometric and catalytic organometallic reactions. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe―C bond energies of para‐substituted benzyldicarbonyl(η5‐cyclopentadienyl)iron, p‐G‐C6H4CH2Fp [1, G = NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, NMe2; Fp = (η5‐C5H5)(CO)2Fe], and para‐substituted α‐cyanobenzyldicarbonyl(η5‐cyclopentadienyl)iron, p‐G‐PANFp [2, PAN = C6H4CH(CN)]. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and more accurate predictions in the study of ΔHhet(Fe―C)'s. The good linear correlations [r = 0.98 (g, 1a), 0.99 (g, 2b)] between the substituent effects of heterolytic Fe―C bond energies [ΔΔHhet(Fe―C)'s] of series 1 and 2 and the differences of acidic dissociation constants (ΔpKa) of C―H bonds of p‐G‐C6H4CH3 and p‐G‐C6H4CH2CN imply that the governing structural factors for these bond scissions are similar. And the excellent linear correlations [r = ?1.00 (g, 1c), ?0.99 (g, 2d)] between ΔΔHhet(Fe―C)'s and the substituent σp? constants show that these correlations are in accordance with Hammett linear free energy relationships. The polar effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe―C)'s. ΔΔHhet(Fe―C)'s(1, 2) follow the Capto‐dative Principle. The detailed knowledge of the factors that determine the Fp―C bond strengths would greatly aid in understanding reactivity patterns in many processes. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
14.
Qing Zeng Zucheng Li Daxiong Han Ling Dong Huaqiang Zhai Bin Liu Genben Bai Yujie Zhang 《Journal of Physical Organic Chemistry》2014,27(2):142-155
The knowledge of accurate bond strengths is a fundamental basis for a proper analysis of chemical reaction mechanisms. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe–O and Fe–S bond energies of para‐substituted phenoxydicarbonyl(η5‐cyclopentadienyl) iron [p‐G‐C6H4O(η5‐C5H5)Fe(CO)2, abbreviated as p‐G‐C6H4OFp ( 1 ), where G = NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2] and para‐substituted benzenethiolatodicarbonyl(η5‐cyclopentadienyl) iron [p‐G‐C6H4S(η5‐C5H5)Fe(CO)2, abbreviated as p‐G‐C6H4SFp ( 2 )] complexes. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and more accurate predictions in the study of ΔHhet(Fe–O)'s and ΔHhet(Fe–S)'s. The excellent linear free‐energy relations [r = 0.99 (g, 1a), 1.00 (g, 2b)] among the ΔΔHhet (Fe–O)'s and Δpka's of O–H bonds of p‐G‐C6H4OH or ΔΔHhet(Fe‐S)'s and Δpka's of S–H bonds of p‐G‐C6H4SH imply that the governing structural factors for these bond scissions are similar. And the linear correlations [r = ?0.99 (g, 1g), ?0.98 (g, 2h)] among the ΔΔHhet (Fe‐O)'s or ΔΔHhet(Fe‐S)'s and the substituent σp? constants show that these correlations are in accordance with Hammett linear free‐energy relationships. The polar effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe–O)'s or ΔHhet(Fe–S)'s. ΔΔHhet(Fe–O)'s(g) ( 1 ) and ΔΔHhet(Fe–S)'s(g)( 2 ) follow the Capto‐dative principle. The substituent effects on the Fe–O bonds are much stronger than those on the less polar Fe–S bonds. Insight from this work may help the design of more effective catalytic processes. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
Zhang RiguangLiu Hongyan Ling LixiaLi Zhong Wang Baojun 《Applied Surface Science》2011,257(9):4232-4238
The formation mechanism of CH3O by the adsorption and decomposition of CH3OH on clean and oxygen-precovered Cu2O(1 1 1) surface has been investigated with density functional theory method together with the periodic slab models. Two possible formation pathways of CH3O by CH3OH decomposition on oxygen-precovered (Opre) Cu2O(1 1 1) surface were proposed and discussed. One is the O-H bond-cleavage of CH3OH with H migration to Opre to form CH3O; the other is the C-O bond-scission of CH3OH with CH3 migration to Opre leading to CH3Opre. The calculated results show that the O-H bond-breaking path has the lowest activation barrier 26.8 kJ mol−1, the presence of oxygen-precovered on Cu2O(1 1 1) surface exhibits a high surface reactivity toward the formation of CH3O by the O-H bond-cleavage of CH3OH, and reduce the activation barrier of O-H bond-cleavage. The C-O bond-breaking path was inhibited by dynamics, suggesting that the O atom of CH3O is not from the oxygen-precovered, but comes from the O of CH3OH. Meanwhile, the calculated results give a clear illustration about the formation mechanism of CH3O in the presence of oxygen and the role of oxygen at the microscopic level. 相似文献